Skip to main content

Advertisement

Log in

Risk-Based Comparability Assessment for Monoclonal Antibodies During Drug Development: A Clinical Pharmacology Perspective

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Due to complexities in the structure, function, and manufacturing process of antibody-based therapeutic proteins, comparability assessment for supporting manufacturing changes can sometimes be a challenging task. Regulatory guidance recommends a hierarchical risk-based approach, starting with Chemistry, Manufacturing, and Controls (CMC) analytical characterizations, followed by non-clinical and/or clinical studies to ensure that any potential changes in quality attributes have no adverse impact on efficacy and safety of the product. This review focuses on the changes in quality attributes which may potentially affect the pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of a monoclonal antibody (mAb) product, and provides general guidelines in designing non-clinical and clinical PK/PD studies to help support comparability assessments. A decision tree for comparability assessment is proposed depending on the nature of the changes in quality attributes, the potential impact of such changes, and the timing of the manufacturing change relative to the development process. Ideally, the optimization of manufacturing process should take place in the early stage of drug development (i.e., preclinical to phase 2a) as more stringent comparability criteria would have to be met if manufacturing changes occur in the late stage of drug development (i.e., phase 2b and after), and consequently, major changes in manufacturing process should be avoided during confirmatory phase 3 studies and post-approval of drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S41–52. https://doi.org/10.1016/j.jaci.2009.09.046.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol. 2004;4(2):89–99. https://doi.org/10.1038/nri1266.

    Article  CAS  PubMed  Google Scholar 

  3. Jacobi A, Enenkel B, Garidel P, Eckermann C, Knappenberger M, Presser I, et al. Process development and manufacturing of therapeutic antibodies. In: Dübel S, Reichert JM, editors. Handbook of therapeutic antibodies. 2nd ed. Weinheim: Wiley-Blackwell; 2014. p. 603–664. https://doi.org/10.1002/9783527682423.ch22.

    Google Scholar 

  4. European Medicines Agency. Guideline on similar biological medicinal products containing monoclonal antibodies—non-clinical and clinical issues. 2012. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5E/Step4/Q5E_Guideline.pdf. Accessed June 2018.

  5. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. International conference on harmonization guideline Q5E: comparability of biotechnological/biological products subject to changes in their manufacturing process. 2004. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5E/Step4/Q5E_Guideline.pdf. Accessed June 2018.

  6. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24(10):1241–52. https://doi.org/10.1038/nbt1252.

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008;97(7):2426–47. https://doi.org/10.1002/jps.21180.

    Article  CAS  PubMed  Google Scholar 

  8. Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, et al. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs. 2018;10(4):513–38. https://doi.org/10.1080/19420862.2018.1438797.

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58. https://doi.org/10.1038/clpt.2008.170.

    Article  CAS  Google Scholar 

  10. Benson JM, Peritt D, Scallon BJ, Heavner GA, Shealy DJ, Giles-Komar JM, et al. Discovery and mechanism of ustekinumab: a human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs. 2011;3(6):535–45. https://doi.org/10.4161/mabs.3.6.17815.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016;9(1):51. https://doi.org/10.1186/s13045-016-0283-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brambell FW. The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet. 1966;2(7473):1087–93. https://doi.org/10.1016/S0140-6736(66)92190-8.

    Article  CAS  PubMed  Google Scholar 

  13. Vezer B, Buzas Z, Sebeszta M, Zrubka Z. Authorized manufacturing changes for therapeutic monoclonal antibodies (mAbs) in European public assessment report (EPAR) documents. Curr Med Res Opin. 2016;32(5):829–34. https://doi.org/10.1185/03007995.2016.1145579.

    Article  CAS  PubMed  Google Scholar 

  14. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50. https://doi.org/10.1146/annurev.immunol.25.022106.141702.

    Article  CAS  PubMed  Google Scholar 

  15. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936–49. https://doi.org/10.1093/glycob/cwp079.

    Article  CAS  PubMed  Google Scholar 

  16. Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog. 2005;21(1):11–6. https://doi.org/10.1021/bp040016j.

    Article  CAS  PubMed  Google Scholar 

  17. Torkashvand F, Vaziri B. Main quality attributes of monoclonal antibodies and effect of cell culture components. Iran Biomed J. 2017;21(3):131–41. https://doi.org/10.18869/acadpub.ibj.21.3.131.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7. https://doi.org/10.1208/aapsj080359.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26. https://doi.org/10.1002/jps.20727.

    Article  CAS  PubMed  Google Scholar 

  20. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein–excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011;63(13):1118–59. https://doi.org/10.1016/j.addr.2011.07.006.

    Article  CAS  PubMed  Google Scholar 

  21. Gruia F, Du J, Santacroce PV, Remmele RL Jr, Bee JS. Technical decision making with higher order structure data: impact of a formulation change on the higher order structure and stability of a mAb. J Pharm Sci. 2015;104(4):1539–42. https://doi.org/10.1002/jps.24158.

    Article  CAS  PubMed  Google Scholar 

  22. Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol. 2008;9(6):468–81.

    Article  CAS  Google Scholar 

  23. Bee JS, Randolph TW, Carpenter JF, Bishop SM, Dimitrova MN. Effects of surfaces and leachables on the stability of biopharmaceuticals. J Pharm Sci. 2011;100(10):4158–70. https://doi.org/10.1002/jps.22597.

    Article  CAS  PubMed  Google Scholar 

  24. Food and Drug Administration. FDA guidance concerning demonstration of comparability of human biological products, including therapeutic biotechnology-derived products. 1996. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm122879.htm. Accessed June 2018.

  25. Lewis RM, Cosenza ME. Summary of DIA workshop: comparability challenges: regulatory and scientific issues in the assessment of biopharmaceuticals. Drug Inf J. 2010;44(4):485–504. https://doi.org/10.1177/009286151004400413.

    Article  Google Scholar 

  26. Food and Drug Administration. Guidance for Industry: non-inferiority clinical trials to establish effectiveness. 2016. https://www.fda.gov/downloads/Drugs/Guidances/UCM202140.pdf. Accessed July 2018.

  27. European Medicines Agency. Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues (EMEA/CHMP/BMWP/42832/2005 Rev1). 2015. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/01/WC500180219.pdf. Accessed Sept 2018.

  28. Food and Drug Administration. Guidance for Industry: scientific considerations in demonstrating biosimilarity to a reference product. 2015. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291128.pdf. Accessed Sept 2018.

  29. European Medicines Agency. Guideline on comparability of medicinal products containing biotechnology-derived proteins as active substance: quality issues (EMEA/CPMP/BWP/3207/00/Rev 1). 2003. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003573.pdf. Accessed June 2018.

  30. Food and Drug Administration. Guidance for Industry: comparability protocols for human drugs and biologics: chemistry, manufacturing, and controls information. 2016. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM496611.pdf. Accessed June 2018.

  31. Federici M, Lubiniecki A, Manikwar P, Volkin DB. Analytical lessons learned from selected therapeutic protein drug comparability studies. Biologicals. 2013;41(3):131–47. https://doi.org/10.1016/j.biologicals.2012.10.001.

    Article  CAS  PubMed  Google Scholar 

  32. Chirino AJ, Mire-Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol. 2004;22(11):1383–91. https://doi.org/10.1038/nbt1030.

    Article  CAS  PubMed  Google Scholar 

  33. Planinc A, Bones J, Dejaegher B, Van Antwerpen P, Delporte C. Glycan characterization of biopharmaceuticals: updates and perspectives. Anal Chim Acta. 2016;921:13–27. https://doi.org/10.1016/j.aca.2016.03.049.

    Article  CAS  PubMed  Google Scholar 

  34. European Medicines Agency. Guideline on comparability of biotechnology-derived medicinal products after a change in the manufacturing process non-clinical and clinical issues (EMEA/CHMP/BMWP/101695/2006). 2007. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003935.pdf. Accessed June 2018.

  35. Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci. 2009;18(2):424–33. https://doi.org/10.1002/pro.45.

    Article  CAS  PubMed  Google Scholar 

  36. Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, et al. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol. 2009;46(8–9):1878–82. https://doi.org/10.1016/j.molimm.2009.02.002.

    Article  CAS  PubMed  Google Scholar 

  37. Gao X, Ji JA, Veeravalli K, Wang YJ, Zhang T, McGreevy W, et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J Pharm Sci. 2015;104(2):368–77. https://doi.org/10.1002/jps.24136.

    Article  CAS  PubMed  Google Scholar 

  38. Kuo TT, Aveson VG. Neonatal Fc receptor and IgG-based therapeutics. MAbs. 2011;3(5):422–30. https://doi.org/10.4161/mabs.3.5.16983.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stracke J, Emrich T, Rueger P, Schlothauer T, Kling L, Knaupp A, et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs. 2014;6(5):1229–42. https://doi.org/10.4161/mabs.29601.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, et al. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol. 2011;48(6–7):860–6. https://doi.org/10.1016/j.molimm.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  41. Brorson K, Jia AY. Therapeutic monoclonal antibodies and consistent ends: terminal heterogeneity, detection, and impact on quality. Curr Opin Biotechnol. 2014;30:140–6. https://doi.org/10.1016/j.copbio.2014.06.012.

    Article  CAS  PubMed  Google Scholar 

  42. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63. https://doi.org/10.1021/bc100261d.

    Article  CAS  PubMed  Google Scholar 

  43. Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel. 2010;23(5):385–92. https://doi.org/10.1093/protein/gzq009.

    Article  CAS  PubMed  Google Scholar 

  44. Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs. 2010;2(6):613–24. https://doi.org/10.4161/mabs.2.6.13333.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. https://doi.org/10.1002/psp4.12224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng Y, Tesar DB, Benincosa L, Birnbock H, Boswell CA, Bumbaca D, et al. Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration. MAbs. 2012;4(2):243–55. https://doi.org/10.4161/mabs.4.2.19387.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang YM. Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol. 2010;28(10):509–16. https://doi.org/10.1016/j.tibtech.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  48. Hmiel LK, Brorson KA, Boyne MT 2nd. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem. 2015;407(1):79–94. https://doi.org/10.1007/s00216-014-8108-x.

    Article  CAS  PubMed  Google Scholar 

  49. Hayes JM, Cosgrave EF, Struwe WB, Wormald M, Davey GP, Jefferis R, et al. Glycosylation and Fc receptors. Curr Top Microbiol Immunol. 2014;382:165–99. https://doi.org/10.1007/978-3-319-07911-0_8.

    Article  CAS  PubMed  Google Scholar 

  50. Higel F, Seidl A, Sorgel F, Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100. https://doi.org/10.1016/j.ejpb.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

  51. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59. https://doi.org/10.1093/glycob/cwr027.

    Article  CAS  PubMed  Google Scholar 

  52. Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, et al. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. MAbs. 2012;4(4):475–87. https://doi.org/10.4161/mabs.20737.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, et al. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology. 2007;17(5):529–40. https://doi.org/10.1093/glycob/cwm017.

    Article  CAS  PubMed  Google Scholar 

  54. Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci. 2015;104(6):1866–84. https://doi.org/10.1002/jps.24444.

    Article  CAS  PubMed  Google Scholar 

  55. Millward TA, Heitzmann M, Bill K, Langle U, Schumacher P, Forrer K. Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals. 2008;36(1):41–7. https://doi.org/10.1016/j.biologicals.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  56. Huang L, Biolsi S, Bales KR, Kuchibhotla U. Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal Biochem. 2006;349(2):197–207. https://doi.org/10.1016/j.ab.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  57. Coloma MJ, Trinh RK, Martinez AR, Morrison SL. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1→6) dextran antibody. J Immunol. 1999;162(4):2162–70.

    CAS  PubMed  Google Scholar 

  58. Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–34. https://doi.org/10.1093/glycob/cwv065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han C, McIntosh TS, Geist BJ, Jiao T, Puchalski TA, Goldberg KM, et al. A novel approach to evaluate the pharmacokinetic biocomparability of a monoclonal antibody derived from two different cell lines using simultaneous crossover design. AAPS J. 2014;16(1):125–8. https://doi.org/10.1208/s12248-013-9547-6.

    Article  CAS  PubMed  Google Scholar 

  60. Wang B, Liang M, Yao Z, Vainshtein I, Lee R, Schneider A, et al. Pharmacokinetic and pharmacodynamic comparability study of moxetumomab pasudotox, an immunotoxin targeting CD22, in cynomolgus monkeys. J Pharm Sci. 2013;102(1):250–61. https://doi.org/10.1002/jps.23343.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang G, Yu C, Yadav DB, Hu Z, Amurao A, Duenas E, et al. Evaluation of heavy-chain C-terminal deletion on product quality and pharmacokinetics of monoclonal antibodies. J Pharm Sci. 2016;105(7):2066–72. https://doi.org/10.1016/j.xphs.2016.04.027.

    Article  CAS  PubMed  Google Scholar 

  62. Xu C, Han C, Marini J, Ford J, Marciniak S, Lopez M Jr, et al. A phase 1, randomized study to assess the pharmacokinetic comparability of siltuximab derived from two different cell lines in healthy subjects. Clin Pharmacol Drug Dev. 2014;3(4):328–34. https://doi.org/10.1002/cpdd.86.

    Article  CAS  PubMed  Google Scholar 

  63. Chioato A, Noseda E, Colin L, Matott R, Skerjanec A, Dietz AJ. Bioequivalence of canakinumab liquid pre-filled syringe and reconstituted lyophilized formulations following 150 mg subcutaneous administration: a randomized study in healthy subjects. Clin Drug Investig. 2013;33(11):801–8. https://doi.org/10.1007/s40261-013-0127-4.

    Article  CAS  PubMed  Google Scholar 

  64. Wynne CJ, Ellis-Pegler RB, Waaka DS, Schwabe C, Lehle M, Heinzmann D, et al. Comparative pharmacokinetics of subcutaneous trastuzumab administered via handheld syringe or proprietary single-use injection device in healthy males. Cancer Chemother Pharmacol. 2013;72(5):1079–87. https://doi.org/10.1007/s00280-013-2273-z.

    Article  CAS  PubMed  Google Scholar 

  65. Wang EQ, Plotka A, Salageanu J, Baltrukonis D, Mridha K, Frederich R, et al. Comparative pharmacokinetics and pharmacodynamics of bococizumab following a single subcutaneous injection using drug substance manufactured at two sites or administration via two different devices. Clin Pharmacol Drug Dev. 2018. https://doi.org/10.1002/cpdd.454.

  66. Anumolu SS, Lindgren S, Vemula J, Floch D, Reynolds C, Wallny HJ, et al. Bioequivalence of canakinumab injected subcutaneously via an autoinjector device or a prefilled safety syringe device in healthy subjects. Clin Pharmacol Drug Dev. 2018. https://doi.org/10.1002/cpdd.455.

    Article  CAS  Google Scholar 

  67. Zhuang Y, de Vries DE, Marciniak SJ, Liu H, Zhou H, Davis HM, et al. Absolute bioavailability and pharmacokinetic comparability of sirukumab following subcutaneous administration by a prefilled syringe or an autoinjector. Clin Pharmacol Drug Dev. 2017;6(6):570–6. https://doi.org/10.1002/cpdd.328.

    Article  CAS  PubMed  Google Scholar 

  68. Struemper H, Murtaugh T, Gilbert J, Barton ME, Fire J, Groark J, et al. Relative bioavailability of a single dose of belimumab administered subcutaneously by prefilled syringe or autoinjector in healthy subjects. Clin Pharmacol Drug Dev. 2016;5(3):208–15. https://doi.org/10.1002/cpdd.219.

    Article  CAS  PubMed  Google Scholar 

  69. Xu Z, Marciniak SJ Jr, Frederick B, Kim L, Zhuang Y, Davis HM, et al. Pharmacokinetic bridging approach for developing biologics-delivery devices: a case study with a golimumab autoinjector. Clin Ther. 2015;37(2):427–38. https://doi.org/10.1016/j.clinthera.2014.09.012.

    Article  CAS  PubMed  Google Scholar 

  70. REPATHA (Evolocumab) Drug Approval Package-Evolocumab FDA Clinical Pharmmacology and Biopharmaceutics Review. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125522Orig1s000TOC.cfm. Accessed July 2018.

  71. Marachelian A, Desai A, Balis F, Katzenstein H, Qayed M, Armstrong M, et al. Comparative pharmacokinetics, safety, and tolerability of two sources of ch14.18 in pediatric patients with high-risk neuroblastoma following myeloablative therapy. Cancer Chemother Pharmacol. 2016;77(2):405–12. https://doi.org/10.1007/s00280-015-2955-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. COSENTYX (Secukinumab) Drug Approval Package—Secukinumab FDA Clinical Pharmmacology and Biopharmaceutics Review. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125504Orig1s000TOC.cfm. Accessed July 2018.

  73. BEST (Biomarkers, EndpointS, and other Tools) Resource. 2018. https://www.ncbi.nlm.nih.gov/books/NBK326791/pdf/Bookshelf_NBK326791.pdf. Accessed July 2018.

  74. European Medicines Agency. Guideline on immunogenicity assessment of therapeutic proteins (EMEA/CHMP/BMWP/14327/2006 Rev 1). 2017. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/06/WC500228861.pdf. Accessed June 2018.

  75. Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1(6):457–62. https://doi.org/10.1038/nrd818.

    Article  CAS  PubMed  Google Scholar 

  76. Sharma B. Immunogenicity of therapeutic proteins. Part 3: impact of manufacturing changes. Biotechnol Adv. 2007;25(3):325–31. https://doi.org/10.1016/j.biotechadv.2007.01.007.

    Article  CAS  PubMed  Google Scholar 

  77. Wang W, Singh SK, Li N, Toler MR, King KR, Nema S. Immunogenicity of protein aggregates—concerns and realities. Int J Pharm. 2012;431(1–2):1–11. https://doi.org/10.1016/j.ijpharm.2012.04.040.

    Article  CAS  PubMed  Google Scholar 

  78. Kuriakose A, Chirmule N, Nair P. Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res. 2016;2016:1298473–18. https://doi.org/10.1155/2016/1298473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105(2):417–30. https://doi.org/10.1016/j.xphs.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  80. Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–87. https://doi.org/10.1002/jps.22276.

    Article  CAS  PubMed  Google Scholar 

  81. Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, et al. Preclinical models used for immunogenicity prediction of therapeutic proteins. Pharm Res. 2013;30(7):1719–28. https://doi.org/10.1007/s11095-013-1062-z.

    Article  CAS  PubMed  Google Scholar 

  82. Deeks ED. GP2015: an etanercept biosimilar. BioDrugs. 2017;31(6):555–8. https://doi.org/10.1007/s40259-017-0246-1.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cohen S, Genovese MC, Choy E, Perez-Ruiz F, Matsumoto A, Pavelka K, et al. Efficacy and safety of the biosimilar ABP 501 compared with adalimumab in patients with moderate to severe rheumatoid arthritis: a randomised, double-blind, phase III equivalence study. Ann Rheum Dis. 2017;76(10):1679–87. https://doi.org/10.1136/annrheumdis-2016-210459.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing analytical similarity of proposed Amgen biosimilar ABP 501 to adalimumab. BioDrugs. 2016;30(4):321–38. https://doi.org/10.1007/s40259-016-0184-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Food and Drug Administration. Guidance for Industry: immunogenicity assessment for therapeutic protein products. 2014. https://www.fda.gov/downloads/drugs/guidances/ucm338856.pdf. Accessed June 2018.

Download references

Acknowledgments

The authors would like to thank Michael Lewis, PhD, from Discovery, Product Development and Supply of Janssen R&D, LLC for his critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Xu.

Ethics declarations

Conflicts of Interest

YZ, DC, AS, and ZX are employees of Janssen Research & Development, LLC and hold stock in Johnson & Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Chen, D., Sharma, A. et al. Risk-Based Comparability Assessment for Monoclonal Antibodies During Drug Development: A Clinical Pharmacology Perspective. AAPS J 20, 109 (2018). https://doi.org/10.1208/s12248-018-0268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0268-8

KEY WORDS

Navigation