Skip to main content

Advertisement

Log in

Food pollution: a comprehensive review of chemical and biological sources of food contamination and impact on human health

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Background

Safe food production is a vital part of providing nutrient-dense food to meet consumer demand. The production and distribution of food is a multistep system from farm to fork, with the potential for food contamination at many stages on-route. Chemical contamination from agriculture and aquaculture, food packaging and disinfection and biological contamination with pathogenic organisms represent a significant threat to public health safety. The aim of this comprehensive review was to outline such issues and the consequences of food contamination for consumer health.

Main text

The extensive use of pesticides and agrochemicals in particular are an important part of agricultural systems and public health. Reports show that children are particularly at risk from foodborne pollution from chemicals such as pesticides. Even with the implementation of maximal residual levels and a ban on certain chemical pollutants, the risk of the disease still remains as such chemicals persist in the natural environment. Additionally, the presence of antimicrobial resistance amongst foodborne pathogens highlights the importance of preventing this route of disease transmission.

Conclusion

Food pollution represents a serious issue globally, as the pressure on food production systems increases to match the increasing demand for food. As such, food poisoning resulting from the ingestion of contaminated food with either chemical or biological pollutants represents a significant challenge and public safety issue. The magnitude of this threat and its implications for human morbidity and mortality is not fully understood as new issues are constantly emerging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UN 2015 Transforming our world: the 2030 agenda for sustainable development.

  2. Hoffmann S, Devleesschauwer B, Aspinall W, Cooke R, Corrigan T, Havelaar A, et al. Attribution of global foodborne disease to specific foods: findings from a World Health Organization structured expert elicitation. PLoS One. 2017;12(9):e0183641. https://doi.org/10.1371/journal.pone.0183641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tirima S, Bartrem C, Lindern I, Braun M, Lind D, Anka SM, et al. Food contamination as a pathway for lead exposure in children during the 2010–2013 lead poisoning epidemic in Zamfara, Nigeria. J Environ Sci. 2017. https://doi.org/10.1016/j.jes.2017.09.007.

    Article  Google Scholar 

  4. Vogt R, Bennett D, Cassady D, Frost J, Ritz B, Hertz-Picciotto I. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment. Environ Health. 2012;11:83.

    Article  Google Scholar 

  5. Kato T, Tada-Oikawa S, Wang L, Murata M, Kuribayashi K. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation. Toxicol Appl Pharmacol. 2013;273(1):10–8. https://doi.org/10.1016/j.taap.2013.08.029.

    Article  CAS  PubMed  Google Scholar 

  6. Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6(2):48–60. https://doi.org/10.1002/fes3.108.

    Article  Google Scholar 

  7. Meade E, Slattery MA, Garvey M. Antimicrobial resistance: an agent in zoonotic disease and increased morbidity. J Clin Exp Toxicol. 2017;1(1).

  8. Ghimpeteanu OM, Militaru M, Scippo ML. Dioxins and polychlorinated biphenyls contamination in poultry liver related to food safety: a review. Food Control. 2014;38:47–53.

    Article  CAS  Google Scholar 

  9. Woodruff T, Zota A, Schwartz J. Environmental chemicals in pregnant women in the US: NHANES 2003–2004. Environ Health Perspect. 2011;119:878–85.

    Article  Google Scholar 

  10. Nerín C, Aznar M, Carrizo D. Food contamination during food process. Trends Food Sci Technol. 2016;48(43–68):63–8. https://doi.org/10.1016/j.tifs.2015.12.004.

    Article  CAS  Google Scholar 

  11. Caito S, Aschner M. Neurotoxicity of metals. Handb Clin Neurol. 2015;131:169–89. https://doi.org/10.1016/B978-0-444-62627-1.00011-1.

    Article  PubMed  Google Scholar 

  12. Rather IA, Koh WY, Paek WK, Lim J. The sources of chemical contaminants in food and their health implications. Front Pharmacol. 2017;8:830. https://doi.org/10.3389/fphar.2017.00830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ingelfinger JR. Melamine and the global implications of food contamination. N Engl J Med. 2008;359(26):2745–8.

    Article  CAS  Google Scholar 

  14. Valero A, Ortiz JC, Fongaro G, Hernandez M, Rodriquez-Lazaro D. Definition of sampling procedures for collective-eating establishments based on the distribution of environmental microbiological contamination on food handlers, utensils and surfaces. Food Control. 2017;77:8–16.

    Article  Google Scholar 

  15. Garvey M, Panaitescu E, Menon L, Byrne C, Dervin S, Hinder SJ. Pillai SC (2016) Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens. J Catal. 2016;344:631–9.

    Article  CAS  Google Scholar 

  16. Souza VGL, Fernando AL. Nanoparticles in food packaging: biodegradability and potential migration to food: a review. Food Packaging Shelf. 2016;8:63–70. https://doi.org/10.1016/j.fpsl.2016.04.001.

    Article  Google Scholar 

  17. Dervin S, Aviles R, Murphy J, Pillai S, Garvey M. An in vitro toxicity assessment of graphene nanosheets on alveolar cells as a potential target organ of toxicity. Appl Surf Sci. 2017;434:1274–84.

    Article  Google Scholar 

  18. Melin VE, Potineni H, Hunt P, Griswold J, Siems B, Werre SR, et al. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. Reprod Toxicol. 2014;50:163–70. https://doi.org/10.1016/j.reprotox.2014.07.071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kettlitz B, Kemendi G, Thorgrimsson N, Cattoor N, Verzegnassi L, Le Bail-Collet Y, et al. Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33(6):968–82. https://doi.org/10.1080/19440049.2016.1184521.

    Article  CAS  PubMed  Google Scholar 

  20. Akanele AE, Scholastica Mgbo Otu Chukwu U, Chukwu Mary Ahudie B. Microbiological contamination of food: the mechanisms, impacts and prevention. Int J Sci Technol Res. 2016;5(3).

  21. Malavi DN, Muzhingi T, Abong GO. Good manufacturing practices and microbial contamination sources in orange fleshed sweet potato puree processing plant in Kenya. Int J Food Sci. 2018;2018:1–11. https://doi.org/10.1155/2018/4093161.

    Article  Google Scholar 

  22. Tewari A, Abdulla S. Bacillus cereus food poisoning: international and Indian perspective. J Food Sci Technol. 2015;52(5):2500–11. https://doi.org/10.1007/s13197-014-1344-4.

    Article  CAS  PubMed  Google Scholar 

  23. Heyndrickx M. The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl Environ Soil Sci. 2011;2011:1–11. https://doi.org/10.1155/2011/561975.

    Article  CAS  Google Scholar 

  24. Muhterem-Uyar M, Dalmasso M, Bolocan AS, Hernandez M, Kapetanakou AE, Kuchta T, et al. Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control. 2015;51:94–107.

    Article  Google Scholar 

  25. Hamidiyan N, Salehi-Abargouei A, Rezaei Z, Tafti RD, Akrami-Mohajeri F. The prevalence of Listeria spp. food contamination in Iran: a systematic review and meta-analysis. Food Res Int. 2018;107:437–50. https://doi.org/10.1016/j.foodres.2018.02.038.

    Article  PubMed  Google Scholar 

  26. Shantha SM, Gopal S. Incidence of Listeria species in food and food processing environment: a review. Res Rev. 2013;3(1).

  27. Argudín MA, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010;2:1751–73. https://doi.org/10.3390/toxins2071751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bui-Klimke TR, Wu F. Ochratoxin A and human health risk: A review of the evidence. Crit Rev Food Sci Nutr. 2015;55(13):1860–9. https://doi.org/10.1080/10408398.2012.724480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carrasco E, Morales-Rueda A, Garcia-Gimeno RA. Cross-contamination and recontamination by Salmonella in foods: a review. Food Res Int. 2012;45:545–56.

    Article  Google Scholar 

  30. EFSA, 2017 https://www.efsa.europa.eu/en/topics/topic/campylobacter

  31. EFSA, 2010 https://www.efsa.europa.eu/en/efsajournal/pub/2090

  32. Smith JL. Campylobacter jejuni infection during pregnancy: long-term consequences of associated bacteremia, Guillain-Barré syndrome, and reactive arthritist. J Food Prot. 2002;65(4):696–708.

    Article  Google Scholar 

  33. WHO, 2018. http://www.who.int/news-room/fact-sheets/detail/e-coli

  34. Irikura D, Monma C, Suzuki Y, Nakama A, Kai A, Fukui-Miyazaki A, et al. Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food. Poisoning outbreaks. PLoS One. 2015;10(11):e0138183. https://doi.org/10.1371/journal.pone.0138183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics and translational applications. Toxins. 2016;8:73. https://doi.org/10.3390/toxins8030073.

    Article  CAS  PubMed Central  Google Scholar 

  36. Lund BM, Peck MW. A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis. 2016;12(3):177–82. https://doi.org/10.1089/fpd.2014.1842.

    Article  Google Scholar 

  37. Parra-Flores J, Cerda-Leal F, Contreras A, Valenzuela-Riffo N, Rodríguez A, Aguirre J. Cronobacter sakazakii and microbiological parameters in dairy formulas associated with a food alert in Chile. Front Microbiol. 2018;9:1708. https://doi.org/10.3389/fmicb.2018.01708.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sani NA, Odeyemi OA. Occurrence and prevalence of Cronobacter spp. in plant and animal derived food sources: a systematic review and meta-analysis. SpringerPlus. 2015;4:545. https://doi.org/10.1186/s40064-015-1324-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chelkowski J, Gromadzka K, Stepieri K, Lenc L, Kostecki M. Fusarium species, zearalenone and deoxynivalenol content in preharvest scabby wheat heads from Poland. World Mycotoxin J. 2012;5:133–41. https://doi.org/10.3920/WMJ2011.1304.

    Article  CAS  Google Scholar 

  40. Eggimann P, Chevrole JC, Starobinski M, Majno P, Totsch M, Chapuis B, et al. Primary invasive aspergillosis of the digestive tract: report of two cases and review of the literature. Infection. 2006;34:333–8. https://doi.org/10.1007/s15010-006-5660-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar GD, Ravi S, Micallef SA, Brown EW, Marcisin D. Aeolian contamination of fruits by enteric pathogens: an unexplored paradigm. Curr Opin Food Sci. 2017. https://doi.org/10.1016/j.cofs.2017.12.003.

    Article  Google Scholar 

  42. Bui-Klimke T, Wu F. Evaluating weight of evidence in the mystery of Balkan endemic nephropathy. Risk Anal. 2014;34:1688–705. https://doi.org/10.1111/risa.12239.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. Deoxynivalenol and its toxicity. Interdiscip Toxicol. 2010;3(3):94–9. https://doi.org/10.2478/v10102-010-0019-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hueza IM, Raspantini PC, Raspantini LE, Latorre AO, Górniak SL. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins (Basel). 2014;6(3):1080–95. https://doi.org/10.3390/toxins6031080.

    Article  CAS  Google Scholar 

  45. De Keukeleire S, Reynders M. Hepatitis E: an underdiagnosed, emerging infection in nonendemic regions. J Clin Transl Hepatol. 2015;3(4):288–91. https://doi.org/10.14218/JCTH.2015.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sattar SA, Tetro J, Bidawid S, Farber J. Foodborne spread of hepatitis a: recent studies on virus survival, transfer and inactivation. Can J Infect Dis. 2000;11(3):159–63.

    Article  CAS  Google Scholar 

  47. Todd ECD, Greig JD. Viruses of foodborne origin: a review. Virus Adaptation and Treatment. 2015;7:25–45. https://doi.org/10.2147/vaat.s50108.

    Article  Google Scholar 

  48. Garvey M. Zoonotic parasite species and viral pathogens of livestock associated with human morbidity. E.C. Vet Res. 2018;3(2):300–11.

    Google Scholar 

  49. Keiser J, Utzinger J. Food-borne Trematodiases. Clin Microbiol Rev. 2009;22(3):466–83. https://doi.org/10.1128/CMR.00012-09.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Balagurunathan R, Shanthi J. Role of chaperones in bacterial pathogenicity - a new therapeutic strategy. Int J Curr Res Rev. 2012;4(7).

  51. Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2017;17(3):173–83.

    Article  Google Scholar 

  52. Neckers L, Tatu U. Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbiol. 2008;11; 4(6):519–27. https://doi.org/10.1016/j.chom.2008.10.011.

    Article  CAS  Google Scholar 

  53. Ogura Y, Ookab T, Iguchib A, Tohc H, Asadulghania M, Kenshiro O, et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. PNAS. 2009;106(42):17939–44.

    Article  CAS  Google Scholar 

  54. Koo HL, Ajami N, Atmar RL, DuPont HL. Noroviruses: the principal cause of foodborne disease worldwide. Discov Med. 2010;10(50):61–70.

    PubMed  PubMed Central  Google Scholar 

  55. Mąka Ł, Maćkiw E, Ścieżyńska H, Popowska M. Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland. Ann Agric Environ Med. 2015;22(3):403–8. https://doi.org/10.5604/12321966.1167701.

    Article  CAS  PubMed  Google Scholar 

  56. Abeyrathne EDNS, Lee HY, Ahn DU. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—a review. Poult Sci. 2013;92:3292–9. https://doi.org/10.3382/ps.2013-03391.

    Article  CAS  PubMed  Google Scholar 

  57. Hong SO, Kim HS, Yoon KS. Survival and risk comparison of campylobacter jejuni on various processed meat products. Int J Environ Res Public Health. 2016;13(6):580. https://doi.org/10.3390/ijerph13060580.

    Article  CAS  PubMed Central  Google Scholar 

  58. Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol. 2011;2:200. https://doi.org/10.3389/fmicb.2011.00200.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Garvey.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garvey, M. Food pollution: a comprehensive review of chemical and biological sources of food contamination and impact on human health. Nutrire 44, 1 (2019). https://doi.org/10.1186/s41110-019-0096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-019-0096-3

Keywords

Navigation