Skip to main content

Sources and Health Impacts of Chemical Contaminants in Foods

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

Chemical contaminants are primarily responsible for major outbreaks of foodborne diseases. A wide range of organic and inorganic chemical contaminants can be naturally found in the environment or added in adulterated foods during their processing, packaging, and storage. The presence of these unwanted chemicals in foods at a higher concentration above the allowable limit could be fatal to human health. Potential health implications can be mild gastrointestinal symptoms to severe hepatic, neurological, and other disorders. Chemical contamination can be food specific and can occur at any stage of food processing. Risk assessment and risk management need to be applied at different levels of food processing and handling to limit contamination below the permitted threshold. Analytical detection of food contaminants and successive control and monitoring should be done at all phases of food production, processing, and distribution. Alternative options in accordance with good agricultural and manufacturing practices along with integrated management in the supply chain can help to minimize chemical contaminations in foods. This chapter presents different types and sources of chemical contaminants and their associated health risks. Furthermore, alternate options to minimize chemical contaminants in foods are addressed in this chapter.

Shariful Kibria Nabil and Nadira Mustari are equally first author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salter, S. J. (2014). The food-borne identity. Nature Reviews Microbiology, 12(8), 533. https://doi.org/10.1038/nrmicro3313.

    Article  CAS  PubMed  Google Scholar 

  2. Callejón, R. M., Rodríguez-Naranjo, M. I., Ubeda, C., Hornedo-Ortega, R., Garcia-Parrilla, M. C., & Troncoso, A. M. (2015). Reported foodborne outbreaks due to fresh produce in the united states and European Union: Trends and causes. Foodborne Pathogens and Disease, 12(1), 32–38. https://doi.org/10.1089/fpd.2014.1821.

    Article  PubMed  Google Scholar 

  3. Faille, C., Cunault, C., Dubois, T., & Bénézech, T. (2018). Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innovative Food Science and Emerging Technologies, 46, 65–73. https://doi.org/10.1016/j.ifset.2017.10.002.

    Article  Google Scholar 

  4. Rather, I. A., Koh, W. Y., Paek, W. K., & Lim, J. (2017). The sources of chemical contaminants in food and their health implications. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00830.

  5. Scanlan, F. (2007). Potential contaminants in the food chain: Identification, prevention and issue management. Nestlé Nutrition Institute Workshop Series: Pediatric Program, 60, 65–76. https://doi.org/10.1159/000106361.

    Article  Google Scholar 

  6. Zaccheo, A., Palmaccio, E., Venable, M., Locarnini-Sciaroni, I., & Parisi, S. (2016). Food hygiene and applied food microbiology in an anthropological cross cultural perspective (pp. 1–109). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-44975-3.

    Book  Google Scholar 

  7. Fung, F., Wang, H. S., & Menon, S. (2018). Food safety in the twenty-first century. Biomedical Journal, 41(2), 88–95. https://doi.org/10.1016/j.bj.2018.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Veronese, K. (2012). The first artificial sweetener poisoned lots of Romans. Gizmodo.

    Google Scholar 

  9. Published: November 15, 1858 Copyright ©. The New York Times. p. 1858, 1858.

    Google Scholar 

  10. Dyer, P. (2009). The 1900 Arsenic poisoning epidemic. Brewery History, 130, 65–85.

    Google Scholar 

  11. Whaton, J. (2011). The Arsenic Century: How Victorian Britain was poisoned at home, work, and play. Journal of Occupational and Environmental Medicine, 53(2), 224. https://doi.org/10.1097/JOM.0b013e3182028fa7.

    Article  Google Scholar 

  12. Maruyama, K., Yorifuji, T., Tsuda, T., Sekikawa, T., Nakadaira, H., & Saito, H. (2012). Methyl mercury exposure at Niigata, Japan: Results of neurological examinations of 103 adults. Journal of Biomedicine and Biotechnology, 2012, 8–10. https://doi.org/10.1155/2012/635075.

    Article  CAS  Google Scholar 

  13. Murata, K., & Sakamoto, M. (2019). Minamata disease (Encyclopedia of Environmental Health) (pp. 401–407). Burlington: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.02075-3.

    Book  Google Scholar 

  14. Malisch, R. (May 2000). Increase of the PCDD/F-contamination of milk, butter and meat samples by use of contaminated citrus pulp. Chemosphere, 40, 1041–1053. https://doi.org/10.1016/S0045-6535(99)00352-5.

    Article  CAS  PubMed  Google Scholar 

  15. Covaci, A., Voorspoels, S., Schepens, P., Jorens, P., Blust, R., & Neels, H. (2008). The Belgian PCB/dioxin crisis-8 years later An overview. Environmental Toxicology and Pharmacology, 25(2), 164–170. https://doi.org/10.1016/j.etap.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  16. Thomson, B., Poms, R., & Rose, M. (2012). Incidents and impacts of unwanted chemicals in food and feeds (Quality assurance and safety of crops & foods) (pp. 77–92). https://doi.org/10.1111/j.1757-837X.2012.00129.x.

    Book  Google Scholar 

  17. Richard, F. S. (2017). How the history of food safety shapes today’s rules. Food Engineering.

    Google Scholar 

  18. Islam, M. N., Mursalat, M., & Khan, M. S. (2016). A review on the legislative aspect of artificial fruit ripening. Agriculture & Food Security, 5(8), 1. https://doi.org/10.1186/s4006601600575.

    Article  CAS  Google Scholar 

  19. Khan, M. S., & Rahman, M. S. (2017). Pesticide residue in foods: Sources, management, and control. New York: Springer International Publishing.

    Book  Google Scholar 

  20. Hoar, S. K., Blair, A., Holmes, F. F., Boysen, C. D., Robel, R. J., Hoover, R., Fraumeni, J. F., Jr., et al. (1986). Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. JAMA, 256(9), 1141–1147. https://doi.org/10.1001/jama.1986.03380090081023.

    Article  CAS  PubMed  Google Scholar 

  21. Roberts, J. R., & Reigart, J. R. (2013). Chronic effects. In Recognition and management of pesticide poisonings. Washington, DC: EPA.

    Google Scholar 

  22. Saeedi Saravi, S. S., & Shokrzadeh, M. (2011). Role of pesticides in human life in the modern age: A review. In Pesticides in the modern world - risks and benefits. Shanghai: INTECH.

    Google Scholar 

  23. Fallis, A. (2013). Pesticide application and safety training for applicators of public health pesticides. Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004.

  24. Pesticide Residue Monitoring Program Reports and Data. (2008). U.S Food and Drug Administration.

    Google Scholar 

  25. Schrenk, D. (2004). Chemische Lebensmittelkontaminanten. Bundesgesundheitsblatt - Gesundheitsforsch. -Gesundheitsschutz, 47(9), 841–847. https://doi.org/10.1007/s00103-004-0892-6.

    Article  CAS  Google Scholar 

  26. Jeong, S., Kang, D., Lim, M., Kang, C. S., & Sung, H. J. (2010). Risk assessment of growth hormones and antimicrobial residues in meat. Toxicological Research. Assessment for Veterinary, 26(4), 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. San Martin, B., et al. (2010). Withdrawal time of four pharmaceutical formulations of enrofloxacin in poultry according to different maximum residues limits. Journal of Veterinary Pharmacology and Therapeutics, 33(3), 246–251. https://doi.org/10.1111/j.1365-2885.2009.01127.x.

    Article  CAS  PubMed  Google Scholar 

  28. FAO/WHO. (2013). Residue evaluation of certain veterinary drugs.

    Google Scholar 

  29. Kim, S. (2017). The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological Reviews, 176(12), 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040.

    Article  CAS  Google Scholar 

  30. Peter, J. D. (1987). Plant hormones and their role in plant growth and development. Dordrecht: Martinus Nijhoff Publishers.

    Google Scholar 

  31. Harman, G. E. (2011). Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. New Phytologist, 189(3), 647–649. https://doi.org/10.1111/j.1469-8137.2010.03614.x.

    Article  Google Scholar 

  32. Lymperopoulos, P., Msanne, J., & Rabara, R. (2018). Phytochrome and phytohormones: Working in tandem for plant growth and development. Frontiers in Plant Science, 9, 1–14. https://doi.org/10.3389/fpls.2018.01037.

    Article  Google Scholar 

  33. Xu, L., Wu, C., Oelmüller, R., & Zhang, W. (2018). Role of phytohormones in piriformospora indica-induced growth promotion and stress tolerance in plants: More questions than answers. Frontiers in Microbiology, 9, 1–13. https://doi.org/10.3389/fmicb.2018.01646.

    Article  Google Scholar 

  34. Tian, H., Lv, B., Ding, T., Bai, M., & Ding, Z. (2018). Auxin-BR interaction regulates plant growth and development. Frontiers in Plant Science, 8, 1–8. https://doi.org/10.3389/fpls.2017.02256.

    Article  Google Scholar 

  35. Tufa, T. B.. Veterinary drug residues in food-animal products : Its risk factors and veterinary science & technology(2016). Veterinary drug residues in food-animal products : Its risk factors and potential effects on public health. Journal of Veterinary Science & Technology, 7, 1. https://doi.org/10.4172/2157-7579.1000285.

    Article  CAS  Google Scholar 

  36. VICH Steering Committee. (2016). Studies to evaluate the metabolism and residue kinetics of veterinary drugs in foodproducing animals (p. 44). Amsterdam: European Medicines Agency.

    Google Scholar 

  37. Arlt, D. U. (2010). The legislation of food colours in Europe. Brussels: Natural Food Colours Association.

    Google Scholar 

  38. Downham, A., & Collins, P. (2000). Colouring our foods in the last and next millennium. Institute of Food Science & Technology, 35(1), 5–22.

    CAS  Google Scholar 

  39. Walford, J. (1980). Historical development of food coloration. In Developments in Food Colours (Vol. 1, pp. 1–25). London: Applied Science Publishers.

    Google Scholar 

  40. Sharma, V., McKone, H. T., & Markow, P. G. (2011). A global perspective on the history, use, and identification of synthetic food dyes. Journal of Chemical Education, 88(1), 24–28. https://doi.org/10.1021/ed100545v.

    Article  CAS  Google Scholar 

  41. Dyes, A. (2005). Azo Dyes. pp. 6–10.

    Google Scholar 

  42. König, J. (2015). Food colour additives of synthetic origin. Amsterdam: Elsevier. https://doi.org/10.1016/B978-1-78242-011-8.00002-7.

    Book  Google Scholar 

  43. Kobylewski, S., & Jacobson, M. F. (2012). Toxicology of food dyes. International Journal of Occupational and Environmental Health, 18(3), 220–246. https://doi.org/10.1179/1077352512Z.00000000034.

    Article  CAS  PubMed  Google Scholar 

  44. Fouad, M. M. K., & El Sayed, A. M. (1999). Migration of DINP and DOP plasticisers from PVC sheets into food. Environmental Management and Health, 10(5), 297–302.

    Article  Google Scholar 

  45. Nielsen, T. J., Jagerstad, I. M., & Oste, R. E. (1992). Study of factors affecting the absorption of aroma compounds into low-density polyethylene. Journal of the Science of Food and Agriculture, 60(3), 377–381.

    Article  CAS  Google Scholar 

  46. F. Devlieghere, B. De Meulenaer, J. Demyttenaere, and A. Huygherbaert, “Evaluation of recycled HDPE milk bottles for food applications,” 2009, Food Additives & Contaminants. 1998 Apr;15(3):336-345 doi: https://doi.org/10.1080/02652039809374649.

  47. Lau, O., & Wong, S. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882, 255–270.

    Article  CAS  PubMed  Google Scholar 

  48. Arvanitoyannis, I. S., & Bosnea, L. (2010). Migration of substances from food packaging materials to foods. Critical Reviews in Food Science and Nutrition, 44(2), 63–76. https://doi.org/10.1080/10408690490424621.

    Article  CAS  Google Scholar 

  49. Godbold, J. H., & Sampson, H. A. (2010). US prevalence of self-reported peanut, tree nut, and sesame allergy : 11-year follow-up participation rate. Food, Drug, Insect Sting Allergy, and Anaphylaxis, 125(6), 1322–1326. https://doi.org/10.1016/j.jaci.2010.03.029.

    Article  CAS  Google Scholar 

  50. Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., Herouet-Guicheney, C., et al. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223–240. https://doi.org/10.1016/j.fct.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  51. Matsuo, H., Yokooji, T., & Taogoshi, T. (2015). Allergology international common food allergens and their IgE-binding epitopes. Allergology International, 64(4), 332–343. https://doi.org/10.1016/j.alit.2015.06.009.

    Article  CAS  PubMed  Google Scholar 

  52. Sathe, S. K., Teuber, S. S., & Roux, K. H. (2005). Effects of food processing on the stability of food allergens. Biotechnology Advances, 23, 423–429. https://doi.org/10.1016/j.biotechadv.2005.05.008.

    Article  CAS  PubMed  Google Scholar 

  53. W. Dzwolak, “Assessment of food allergen management in small food facilities,” Food Control, 73, Part B, 323-331 2016, doi: 10.1016/j.foodcont.2016.08.019.

    Google Scholar 

  54. Huang, H., Hsu, C., Yang, B. B., & Wang, C. (2014). Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, 13. https://doi.org/10.1111/1541-4337.12045.

  55. Eduljee, G. H., & Gair, A. J. (1996). Validation of a methodology for modelling PCDD and PCDF intake via the foodchain. Science of the Total Environment, 187(3), 211–229.

    Article  CAS  Google Scholar 

  56. Schecter, A., Cramer, P., Boggess, K., Stanley, J., & James, R. (1997). Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States. Chemosphere, 34(97), 1437–1447.

    Article  CAS  PubMed  Google Scholar 

  57. Patandin, S., Dagnelie, P. C., Mulder, P. G. H., Op De Coul, E., Juul, E., & Sauer, P. J. J. (1999). Dietary exposure to polychlorinated biphenyls and dioxins from infancy until adulthood : A comparison between breast-feeding, toddler, and long- term exposure. Environmental Health Perspectives, 107(1), 45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Casas, C., Llobet, J. M., Bocio, A. N. A., Domingo, J. L., & Teixido, A. (2003). Levels of polychlorinated biphenyls in foods from Catalonia, Spain : Estimated dietary intake. Journal of Food Protection, 66(3), 479–484.

    Article  PubMed  Google Scholar 

  59. Bradley, R. L. (1973). Polychlorinated biphenyls in man’s food-a review. Journal of Milk and Food Technology, 36, 3.

    Article  Google Scholar 

  60. Johnson, T. C. (1979). Accumulation of Polychlorinated Biphenyls (PCBs) in surficial lake superior sediments. Atmospheric Deposition, 13(5), 569–573.

    Google Scholar 

  61. Frink, C. R., Sawhney, B. L., Kulp, K. P., & Fredette, C. G. (1982). Polychlorinated biphenyls in Housatonic River sediments in Massachusetts and Connecticut: Determination, distribution, and transport (Vol. 800, p. 20). New Haven, CT: The Connecticut Agricultural Experiment Station.

    Google Scholar 

  62. Horn, E. G., Hetling, L. J., & Tofflemire, T. J. (1979). The problem of PCBs in the Hudson River system. Annals of the New York Academy of Sciences, 320, 591–609.

    Article  CAS  PubMed  Google Scholar 

  63. Sawhney, B. L., & Hankin, L. (1985). Polychlorinated biphenyls in food : A review. Journal of Food Protection, 48(5), 442–448.

    Article  CAS  PubMed  Google Scholar 

  64. Control, J. A. P., Methods, A., & Plant, P. (1976). Fate of Polybrominated Biphenyls (PBB’s) in soils. Persistence and plant uptake. Journal of Agricultural and Food Chemistry, 24(6), 1198–1201.

    Article  Google Scholar 

  65. Fries, G. F. (1982). Potential polychlorinated biphenyl residues in animal products from application of contaminated sewage sludge to land. Journal of Environmental Quality. Commercial PCB’ s are mixtures of chlorobiphenyls that had a variety of industrial uses in the 50 years of their manufacture, 1, 11.

    Google Scholar 

  66. Spaulding, J. E., & Wessel, J. R. (1972). Occurrence and sources of PCB’s in food In US Department of Commerce: Polychlorinated biphenyls and the environment. National Technical Information Service and Comm, 72(10419), 107.

    Google Scholar 

  67. Farré, M., & Barceló, D. (2012). Emerging organic contaminants and nanomaterials in food. In D. Barceló (Ed.), Emerging Organic Contaminants and Human Health (pp. 1–46). Berlin, Heidelberg: Springer.

    Google Scholar 

  68. Biology, C., Peralta-videa, J. R., Laura, M., Narayan, M., Saupe, G., & Gardea-torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants : Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41, 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005.

    Article  CAS  Google Scholar 

  69. Chao, D., Chen, Y., Chen, J., Shi, S., Chen, Z., Wang, C., et al. (2014). Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biology, 12, 12. https://doi.org/10.1371/journal.pbio.1002009.

    Article  Google Scholar 

  70. Clemens, S. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 67, 489–512. https://doi.org/10.1146/annurev-arplant-043015-112301.

    Article  CAS  PubMed  Google Scholar 

  71. Badruzzaman, A. B. M., Keon-blute, N., Yu, W., Brabander, D., Oates, P. M., & Ashfaque, K. N. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1607.

    Article  PubMed  Google Scholar 

  72. Takahashi, R., Ishimaru, Y., Senoura, T., Shimo, H., Ishikawa, S., & Arao, T. (2011). The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 62(14), 4843–4850. https://doi.org/10.1093/jxb/err136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilbert-Diamond, D., Cottingham, K. L., Gruber, J. F., Punshon, T., & Sayarath, V. (2011). Rice consumption contributes to arsenic exposure in US women. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20656–20660. https://doi.org/10.1073/pnas.1109127108.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stadler, R. H., Product, N., & Centre, T. Heat-generated toxicants in foods : Acrylamide, MCPD esters and furan. Cambridge, UK: Woodhead Publishing Limited.

    Google Scholar 

  75. Areke, E. D. E. N. T., Ydberg, P. E. R. R., Arlsson, P. A. K., & Riksson, S. U. N. E. E. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006.

    Article  Google Scholar 

  76. Robert, F., Hau, J., Philippe, A., Robert, M., & Riediker, S. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419, 448–449.

    Article  Google Scholar 

  77. Robert, F., Hau, J., Philippe, A., Robert, M., & Riediker, S. (2002). Acrylamide from Maillard reaction products. Nature, 419, 449–450.

    Article  PubMed  Google Scholar 

  78. Zaied, S. A. F., Elgammal, M. H., El Seideek, L., Ebrahim, A., & April, M. (2018). Mitigation strategies of furan in coffee beans by irradiation process. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(2).

    Google Scholar 

  79. Shuren, J. (2004). Federal Register, 69(90), 36–38.

    Google Scholar 

  80. Seefelder, W., Varga, N., Studer, A., Williamson, G., & Scanlan, F. P. (2008). Esters of 3-chloro-1,2-propanediol (3-MCPD) in vegetable oils : Significance in the formation of 3- MCPD. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 25(4), 391–400. https://doi.org/10.1080/02652030701385241.

    Article  CAS  Google Scholar 

  81. Esselen, M., & Schrenk, D. Toxicants in foods generated by non-thermal processes. Duxford, UK: Woodhead Publishing Limited.

    Google Scholar 

  82. Finley, J. W., & Schwass, D. E. (1982). Xenobiotics in foods and feeds. Washington, DC: ACS Publications.

    Google Scholar 

  83. Csapó, J., Albert, C., & Csapó-Kiss, Z. (2009). The D-amino acid content of foodstuffs (A Review). Acta Universitatis Sapientiae: Alimentaria, 1, 5–30.

    Google Scholar 

  84. Anfossi, L., Baggiani, C., Giovannoli, C., & Arco, G. D. (2013). Lateral-flow immunoassays for mycotoxins and phycotoxins : A review. Analytical and Bioanalytical Chemistry, 405, 467–480. https://doi.org/10.1007/s00216-012-6033-4.

    Article  CAS  PubMed  Google Scholar 

  85. Park, D. L., & Troxell, T. C. (2002). U.S. Perspective on mycotoxin regulatory issues. In J. W. DeVries, M. W. Trucksess, & L. S. Jackson (Eds.), Mycotoxins and food safety (pp. 277–285). Boston, MA: Springer US.

    Chapter  Google Scholar 

  86. Benford, D. J., & Food Standards Agency. (2013). Risk assessment of chemical contaminants and residues in food. Cambridge, UK: Woodhead Publishing Limited.

    Book  Google Scholar 

  87. Thompson, L. A., & Darwish, W. S. (2019). Environmental chemical contaminants in food : Review of a global problem. Journal of Toxicology, 2345283.

    Google Scholar 

  88. Liu, Y., Kong, G. T., Jia, Q. Y., Wang, F., & Xu, R. S. (2007). Effects of soil properties on heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) in Pearl River Delta, China. Journal of Environmental Science and Health, Part B, 1234, 219–227. https://doi.org/10.1080/03601230601125404.

    Article  CAS  Google Scholar 

  89. Mishra, G. K. (2017). Microbes in heavy metal remediation: A review on current trends and patents. Recent Patents on Biotechnology, 11(3), 188–196.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, R., Liu, Y., Xue, W., Chen, R., & Du, S. (2016). Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. Environmental Science and Pollution Research, 23(24), 25074–25083. https://doi.org/10.1007/s11356-016-7742-6.

    Article  CAS  PubMed  Google Scholar 

  91. Liao, G., Wu, Q., Feng, R., Guo, J., & Wang, R. (2016). Effi ciency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies. Journal of Environmental Management, 170, 116–122. https://doi.org/10.1016/j.jenvman.2016.01.008.

    Article  CAS  PubMed  Google Scholar 

  92. Maftoonazad, N. (2009). Use of edible films and coatings to extend the shelf life of food products. Recent Patents on Food, Nutrition & Agriculture, 1(2), 162–170.

    Article  CAS  Google Scholar 

  93. Alexander, J., Benford, D., Cockburn, A., Cravedi, J.‐. P., Dogliotti, E., Di Domenico, A., et al. (2008). Polycyclic aromatic hydrocarbons in food 1 scientific opinion of the panel on contaminants in the food chain. Retrieved on 9 June 2008. European Food Safety Authority, 6, 1–114.

    Google Scholar 

  94. Mitchell, C. (2010).Natural alternatives to chemical preservatives. Food Safety News.

    Google Scholar 

  95. WHO. (2012). Prevention and reduction of food and feed contamination. Rome: World Health Organization.

    Google Scholar 

  96. Barnaby, R., Liefeld, A., Jackson, B. P., Hampton, T. H., & Stanton, B. A. (2017). Effectiveness of table top water pitcher fi lters to remove arsenic from drinking water. Environmental Research, 158, 610–615. https://doi.org/10.1016/j.envres.2017.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sidhu, J. P. S., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., et al. (2013). Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Science of the Total Environment, 463–464, 488–496. https://doi.org/10.1016/j.scitotenv.2013.06.020.

    Article  CAS  Google Scholar 

  98. Jeong, C. H., Machek, E. J., Shakeri, M., Duirk, S. E., Ternes, T. A., Richardson, S. D., et al. (2017). The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water. Journal of Environmental Sciences, 58, 173–182. https://doi.org/10.1016/j.jes.2017.03.032.

    Article  CAS  Google Scholar 

  99. Guissouma, W., Hakami, O., Al-rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere, 177, 102–108. https://doi.org/10.1016/j.chemosphere.2017.03.011.

    Article  CAS  PubMed  Google Scholar 

  100. Rosen, M. B., Pokhrel, L. R., & Weir, M. H. (2017). A discussion about public health, lead and Legionella pneumophila in drinking water supplies in the United States. Science of the Total Environment, 590–591, 843–852. https://doi.org/10.1016/j.scitotenv.2017.02.164.

    Article  CAS  Google Scholar 

  101. Espejo-herrera, N., Cantor, K. P., Malats, N., & Silverman, D. T. (2015). Nitrate in drinking water and bladder cancer risk in Spain. Environmental Research, 137, 299–307. https://doi.org/10.1016/j.envres.2014.10.034.

    Article  CAS  PubMed  Google Scholar 

  102. Shi, P., Zhou, S., Xiao, H., Qiu, J., Li, A., & Zhou, Q. (2018). Toxicological and chemical insights into representative source and drinking water in eastern China. Environmental Pollution, 233, 35–44. https://doi.org/10.1016/j.envpol.2017.10.033.

    Article  CAS  PubMed  Google Scholar 

  103. Keast, R., & Riddell, L. J. (2007). Caffeine as a flavor additive in soft-drinks. Appetite, 49, 255–259. https://doi.org/10.1016/j.appet.2006.11.003.

    Article  CAS  PubMed  Google Scholar 

  104. Khatri, P. (May 2014). Additives used in soft drinks. Beverage Food World.

    Google Scholar 

  105. Garc, M. S. (2005). Determination of food dyes in soft drinks containing natural pigments by liquid chromatography with minimal clean-up. Food Control, 16, 293–297. https://doi.org/10.1016/j.foodcont.2004.03.009.

    Article  CAS  Google Scholar 

  106. Floriano, L., Ribeiro, L. C., Saibt, N., Bandeira, N. M. G., Prestes, O. D., & Zanella, R. (2018). Determination of six synthetic dyes in sports drinks by dispersive solid-phase extraction and HPLC-UV-Vis. Journal of the Brazilian Chemical Society, 29(3), 602–608.

    CAS  Google Scholar 

  107. Stevens, L. J., Burgess, J. R., Stochelski, M. A., & Kuczek, T. (2014). Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children. Clinical Pediatrics (Philadelphia), 53(2), 133–140. https://doi.org/10.1177/0009922813502849.

    Article  Google Scholar 

  108. Čížková, H., Voldřich, M., Ševčík, R., & Pivoňka, J. (2009). Off-flavour defects of packed waters and soft drinks. Czech Journal of Food Sciences, 27, 379–381.

    Article  Google Scholar 

  109. Food Ingredients & Colors. US Food and Drug Administration, 1–8.

    Google Scholar 

  110. Ioannidou, M. D., Samouris, G., Achilias, D. S., Ioannidou, M. D., Samouris, G., & Achilias, D. S. (2016). Acetaldehyde contamination of water, alcoholic, and non-alcoholic beverages stored in glass or plastic bottles. Toxicological & Environmental Chemistry, 2248. https://doi.org/10.1080/02772248.2015.1115505.

  111. El-aty, A. M. A., Choi, J., Rahman, M., Kim, S., Tosun, A., & Shim, J. (2014). Food additives & contaminants : Part A residues and contaminants in tea and tea infusions : A review. Food Additives & Contaminants: Part A, 31(11), 1794–1804. https://doi.org/10.1080/19440049.2014.958575.

    Article  CAS  Google Scholar 

  112. Li, X., Zhang, Z., Li, P., Zhang, Q., Zhang, W., & Ding, X. (2013). Determination for major chemical contaminants in tea (Camellia sinensis) matrices : A review. FRIN. https://doi.org/10.1016/j.foodres.2012.12.048.

  113. FAO. (2006). Enhancement of coffee quality through the prevention of mould formation.

    Google Scholar 

  114. Vlachos, A., Arvanitoyannis, I. S., & Cultivars, R. (2008). A review of rice authenticity/adulteration methods and results. Critical Reviews in Food Science and Nutrition ISSN, 8398, 553–598. https://doi.org/10.1080/10408390701558175.

    Article  Google Scholar 

  115. Qian, Y., Chen, C., Zhang, Q., Li, Y., Chen, Z., & Li, M. (2010). Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control, 21(12), 1757–1763. https://doi.org/10.1016/j.foodcont.2010.08.005.

    Article  CAS  Google Scholar 

  116. Vemireddy, L. R., & Satyavathi, V. V. (2015). Review of methods for the detection and quantification of adulteration of rice : Basmati as a case study. Journal of Food Science and Technology, 52, 3187–3202. https://doi.org/10.1007/s13197-014-1579-0.

    Article  CAS  PubMed  Google Scholar 

  117. Bhupander, K., & Mukherjee, D. P. (2011). Assessment of human health risk for arsenic, copper, nickel, mercury and zinc in fish collected from tropical wetlands. Advances in Life Science and Technology, 2, 13–25.

    Google Scholar 

  118. Ellen, J., Blazer, V. S., Denslow, N. D., Echols, K. R., Gross, T. S., May, T. W., et al. (2007). Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries. Science of the Total Environment, 378, 376–402. https://doi.org/10.1016/j.scitotenv.2007.02.032.

    Article  CAS  Google Scholar 

  119. Henrik, H., & Gram, L. (1996). Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, 33, 121–137.

    Article  Google Scholar 

  120. Mun, O., Macho, M. L., & Jalo, M. (2000). Total and inorganic arsenic in fresh and processed fish products. Journal of Agricultural and Food Chemistry, 48, 4369–4376.

    Article  Google Scholar 

  121. Taylor, S. L., & Nordlee, J. A. (1993). Chemical additives in seafood products. Clinical Reviews in Allergy, 11, 261–291.

    Article  CAS  PubMed  Google Scholar 

  122. Bocio, A., Llobet, J. M., & Domingo, L. (2007). Intake of chemical contaminants through fish and seafood consumption by children of Catalonia, Spain : Health risks. Food and Chemical Toxicology, 45, 1968–1974. https://doi.org/10.1016/j.fct.2007.04.014.

    Article  CAS  PubMed  Google Scholar 

  123. Smith, A. G., & Gangolli, S. D. (2002). Organochlorine chemicals in seafood : Occurrence and health concerns. Food and Chemical Toxicology, 40, 767–779.

    Article  CAS  PubMed  Google Scholar 

  124. Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques : Review. The American Journal of Applied Sciences, 7(7), 859–877.

    Article  CAS  Google Scholar 

  125. Roybal, E. R. (2006). Quantitative and confirmatory analyses of malachite green and leucomalachite green residues in fish and shrimp. Journal of Agricultural and Food Chemistry, 54, 4517–4523.

    Article  PubMed  Google Scholar 

  126. Verbeke, W., Frewer, L. J., Scholderer, J., & De Brabander, H. F. (2007). Why consumers behave as they do with respect to food safety and risk information. Analytica Chimica Acta, 586, 2–7. https://doi.org/10.1016/j.aca.2006.07.065.

    Article  CAS  PubMed  Google Scholar 

  127. Bryden, W. L. (2012). Mycotoxin contamination of the feed supply chain : Implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1–2), 134–158. https://doi.org/10.1016/j.anifeedsci.2011.12.014.

    Article  CAS  Google Scholar 

  128. Waldner, C., Checkley, S., Blakley, B., Pollock, C., & Mitchell, B. (2002). Managing lead exposure and toxicity in cow – calf herds to minimize the potential for food residues. Journal of Veterinary Diagnostic Investigation, 486, 481–486.

    Article  Google Scholar 

  129. Ahmad, R., Salem, N. M., & Estaitieh, H. (2010). Chemosphere occurrence of organochlorine pesticide residues in eggs, chicken and meat in Jordan. Chemosphere, 78(6), 667–671. https://doi.org/10.1016/j.chemosphere.2009.12.012.

    Article  CAS  PubMed  Google Scholar 

  130. Bocio, A., & Domingo, J. L. (2005). Daily intake of polychlorinated dibenzo- p -dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain : A review of recent studies (20012003) on human PCDD/PCDF exposure through the diet. Environmental Research, 97, 1–9. https://doi.org/10.1016/j.envres.2004.01.012.

    Article  CAS  PubMed  Google Scholar 

  131. Kim, M., Kim, S., Yun, S. J., Kim, D., & Chung, G. (2007). Background levels and dietary intake of PCDD/Fs in domestic and imported meat in South Korea. Chemosphere, 69, 479–484. https://doi.org/10.1016/j.chemosphere.2007.04.062.

    Article  CAS  PubMed  Google Scholar 

  132. Gizzi, F., Reginato, R., & Benfenati, E. (1982). Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) in emissions from an urban incineratop. 1. Average and peak values. Chemosphere, 6, 577–583.

    Article  Google Scholar 

  133. Demirezen, D., & Uruc, K. (2006). Meat comparative study of trace elements in certain fish, meat and meat products. Meat Science, 74, 255–260. https://doi.org/10.1016/j.meatsci.2006.03.012.

    Article  CAS  PubMed  Google Scholar 

  134. Gernah, D. I., & Gbakaan, P. (2013). Effect of potassium carbonate (K2CO3) on the viscosity and related physico – chemical properties of genger (Bombax costatum) powder during storage. Current Research in Nutrition and Food Science Journal, 1(1), 77–82.

    Article  Google Scholar 

  135. Iwegbue, C. M. A. (2012). Metal contents in some brands of biscuits consumed in Southern Nigeria. American Journal of Food Technology, 7(3), 160–167.

    Article  CAS  Google Scholar 

  136. Saracoglu, S., Tuzen, M., Mendil, D., Soylak, M., Elci, L., & Dogan, M. (2004). Heavy metal content of hard biscuits produced in Turkey. Bulletin of Environmental Contamination and Toxicology, 73, 264–269. https://doi.org/10.1007/s00128-004-0422-0.

    Article  CAS  PubMed  Google Scholar 

  137. Gatti, A. M., Tossini, D., Gambarelli, A., Montanari, S., & Capitani, F. (2008). Investigation of the presence of inorganic micro- and nanosized contaminants in bread and biscuits by environmental scanning electron microscopy. Critical Reviews in Food Science and Nutrition, 49(3), 275–282. https://doi.org/10.1080/10408390802064347.

    Article  Google Scholar 

  138. Perez, R. D., & Leon, A. E. (2010). Bromate determination by X-Ray Fluorescence (XRF) to identify pre-baking potassium bromate addition in bread. International Journal of Food Properties, 13(1), 167–175. https://doi.org/10.1080/10942910802256636.

    Article  CAS  Google Scholar 

  139. Thielecke, F., & Nugent, A. P. (2018). Contaminants in grain — A major risk for whole grain safety ? Nutrients, 10, 1–23. https://doi.org/10.3390/nu10091213.

    Article  CAS  Google Scholar 

  140. Kim, M., Lee, Y. D., Park, H. J., Park, S. K., & Lee, J. O. (2005). Contents of heavy metals in soybean curd and starch jelly consumed in Korea. Korean Journal of Food Science and Technology, 37(1), 1–5.

    Article  Google Scholar 

  141. Spence, C. (2015). On the psychological impact of food colour. Spence Flavour, 4, 1–16. https://doi.org/10.1186/s13411-015-0031-3.

    Article  Google Scholar 

  142. Fléché, C., Clément, M. C., Zeggane, S., & Faucon, J. P. (1997). Contamination of bee products and risk for human health: Situation in France. Revue Scientifique et Technique, 16(2), 609–619.

    PubMed  Google Scholar 

  143. Azziz-baumgartner, E., Lindblade, K., Gieseker, K., Rogers, H. S., Kieszak, S., Njapau, H., et al. (2004). Case – Control study of an acute aflatoxicosis outbreak, Kenya. Environmental Medicine, 113(12), 1779–1783. https://doi.org/10.1289/ehp.8384.

    Article  CAS  Google Scholar 

  144. Alexander, J., Benford, D., Cockburn, A., Cravedi, J.‐. P., Dogliotti, E., Di Domenico, A., et al. (2009). Cadmium in food 1 scientific opinion of the panel on contaminants in the food chain. Retrieved on 30 January 2009. European Food Safety Authority, 7, 1–139.

    Google Scholar 

  145. Panel, E., & Chain, F. (2010). Scientific opinion on arsenic in food. European Food Safety Authority, 7(10). https://doi.org/10.2903/j.efsa.2009.1351.

  146. Valsta, L., Pesci, M., Wenzl, T., & Doerge, D. (2011). Results on acrylamide levels in food from monitoring years 2007–2009 and exposure assessment. European Food Safety Authority, 9(4), 1–48. https://doi.org/10.2903/j.efsa.2011.2133.

    Article  Google Scholar 

  147. Panel, E., & Chain, F. (2013). Scientific opinion on lead in food. European Food Safety Authority, 8(4), 1–151. https://doi.org/10.2903/j.efsa.2010.1570.

    Article  CAS  Google Scholar 

  148. Kurokawa, Y., Hayashi, Y., Maekawa, A., Takahashi, M., Kokubo, T., & Odashima, S. (1983). Carcinogenicity of potassium bromate administered. JNCI, 71(5), 965–972.

    CAS  PubMed  Google Scholar 

  149. Jonnalagadda, P. R., Bhat, R. V., Sudershan, R. V., & Naidu, A. N. (2001). Suitability of chemical parameters in setting quality standards for deep-fried snacks. Food Quality and Preference, 12, 223–228.

    Article  Google Scholar 

  150. Man, Y. B. C., & Tan, C. P. (1999). Effects of natural and synthetic antioxidants on changes in refined, bleached, and deodorized palm olein during deep-fat frying of potato chips. JAOCS, 76, 3. https://doi.org/10.1007/s11746-999-0240-y.

    Article  Google Scholar 

  151. Larsen, P. B., & Bruun, P. (2002). Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental Science & Technology, 36(14), 3057–3063.

    Article  Google Scholar 

  152. Fenik, J., Tankiewicz, M., & Biziuk, M. (2011). Properties and determination of pesticides in fruits and vegetables. Trends in Analytical Chemistry, 30(6), 814–826. https://doi.org/10.1016/j.trac.2011.02.008.

    Article  CAS  Google Scholar 

  153. Mursalat, M., Rony, A. H., Hasnat, A., Rahman, M. S., & Islam, M. N. (2013). A critical analysis of artificial fruit ripening: Scientific, legislative and socio-economic aspects. Chemical Engineering & Science Magazine, 1, 1–7.

    Google Scholar 

  154. Torres, C. M., & Manes, P. J. (1996). Determination of pesticide residues in fruit and vegetables. Journal of Chromatography, 754, 301–331.

    Article  CAS  PubMed  Google Scholar 

  155. Cederberg, T. L. Organic environmental chemical contaminants in fresh produce and fruits. Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  156. Tsai, C., Kuo, C., & Shih, D. Y. (2015). Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry. Journal of Food and Drug Analysis, 23(3), 453–462. https://doi.org/10.1016/j.jfda.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  157. Kartal, A. A., Hol, A., Akdogan, A., Elci, A., Ozel, Z., & Elci, L. (2015). Determination of chlorophenols and alkylphenols in water and juice by solid phase derivative extraction and gas chromatography—Mass spectrometry. Analytical Letters, 2719, 408–423. https://doi.org/10.1080/00032719.2014.951446.

    Article  CAS  Google Scholar 

  158. Faizunisa, H., Priyadarshini, I., Chaly, P., Lecturer, S., & Road, A. M. (2016). Evaluation of food adulteration among selected food items - In vitro study. International Journal of Health Sciences and Research, 6, 139–145.

    Google Scholar 

  159. Unit, T., Division, E. P., & Bengal, W. (2015). Practice of using metanil yellow as food colour to process food in unorganized sector of West Bengal - A case study. International Food Research Journal, 22(4), 1424–1428.

    Google Scholar 

  160. Di, C. V., Odena, M., Ruisánchez, I., & Callao, M. P. (2009). Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV—visible spectroscopy and multivariate classification techniques. Talanta, 79, 887–892. https://doi.org/10.1016/j.talanta.2009.05.023.

    Article  CAS  Google Scholar 

  161. Hoefkens, C., Vandekinderen, I., De Meulenaer, B., Devlieghere, F., Baert, K., & Sioen, I. (2009). A literature-based comparison of nutrient and contaminant contents between organic and conventional vegetables and potatoes. British Food Journal, 111(10), 1078–1097. https://doi.org/10.1108/00070700910992934.

    Article  Google Scholar 

  162. Bhanti, M., & Taneja, A. (2007). Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere, 69, 63–68. https://doi.org/10.1016/j.chemosphere.2007.04.071.

    Article  CAS  PubMed  Google Scholar 

  163. Khaniki, G. R. J. (2007). Chemical contaminants in milk and public health concerns: A review. International Journal of Dairy Science, 2(2), 104–115.

    Article  CAS  Google Scholar 

  164. Nadal, M., Domingo, J. L., & Perello, G. (2015). Comparison of the nutritional composition and the concentrations of various contaminants in branded and private label yogurts. Journal of Food Composition and Analysis, 1–7. https://doi.org/10.1016/j.jfca.2015.03.008.

  165. Michaela, C., & Vala, P. (2008). Effect of carrageenan type on viscoelastic properties of processed cheese. Food Hydrocolloids, 22, 1054–1061. https://doi.org/10.1016/j.foodhyd.2007.05.020.

    Article  CAS  Google Scholar 

  166. Bundgaard-nielsen, K., & Nielsen, P. E. R. V. (1995). Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. Journal of Food Protection, 59(3), 268–275.

    Article  Google Scholar 

  167. Lu, J., Pua, X., Liu, C., Chang, C., & Cheng, K. (2013). The implementation of HACCP management system in a chocolate ice cream plant. Journal of Food and Drug Analysis, 22(3), 391–398. https://doi.org/10.1016/j.jfda.2013.09.049.

    Article  PubMed  Google Scholar 

  168. Cruz, A. G., Antunes, A. E. C., Lúcia, A., Sousa, O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020.

    Article  Google Scholar 

  169. Jayalakshmi, C. P., & Sharma, J. D. (1986). Effect of Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT) on rat erythrocytes. Environmental Research, 238, 235–238.

    Article  Google Scholar 

  170. Ozturk, S., & Cakmakci, S. (2006). The effect of antioxidants on butter in relation to storage temperature and duration. European Journal of Lipid Science and Technology, 108, 951–959. https://doi.org/10.1002/ejlt.200600089.

    Article  CAS  Google Scholar 

  171. Iwegbue, C. M. A., Bassey, F. I., Tesi, G. O., & Overah, L. C. (2015). Concentrations and health risk assessment of metals in chewing gums, peppermints and sweets in Nigeria. Journal of Food Measurement and Characterization, 9, 160–174. https://doi.org/10.1007/s11694-014-9221-4.

    Article  Google Scholar 

  172. Sadia, A., Jabbar, M. A., Deng, Y., Hussain, E. A., Riffat, S., Naveed, S., et al. (2012). Short communication: A survey of aflatoxin M1 in milk and sweets of Punjab, Pakistan. Food Control, 26(2), 235–240. https://doi.org/10.1016/j.foodcont.2012.01.055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohidus Samad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nabil, S.K., Mustari, N., Khan, M.S. (2021). Sources and Health Impacts of Chemical Contaminants in Foods. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_3

Download citation

Publish with us

Policies and ethics