1 Introduction

Let k, n be two positive integers. As in [17, 21], an order k dimension n tensor \(\mathbb {A}=(a_{i_{1}\cdots i_{k}})\) over the real field \(\mathbb{R}\) is a multidimensional array with \(n^{k}\) entries \(a_{i_{1}\cdots i_{k}}\in\mathbb{R}\), where \(i_{j}\in[n]=\{1,2,\ldots, n\}\), \(j\in[k]=\{ 1,2,\ldots, k\}\). Obviously, a vector is an order 1 tensor and a square matrix is an order 2 tensor.

Furthermore, we call a tensor \(\mathbb{A}\) nonnegative (positive), denoted by \(\mathbb{A}\geq0\) (\(\mathbb{A}>0\)), if every entry has \(a_{i_{1}\cdots i_{k}}\geq0\) (\(a_{i_{1}\cdots i_{k}}>0\)). The tensor \(\mathbb{A}=(a_{i_{1}\cdots i_{k}})\) is called symmetric if \(a_{i_{1}\cdots i_{k}}=a_{\sigma(i_{1})\cdots\sigma(i_{k})}\), where σ is any permutation of the indices.

Let \(\mathbb{A}\) be an order k dimension n tensor. If there is a complex number λ and a nonzero complex vector \(x=(x_{1},x_{2},\ldots, x_{n})^{T}\) such that

$$\mathbb{A}x^{k-1}=\lambda x^{[k-1]}, $$

then λ is called an eigenvalue of \(\mathbb{A}\) and x an eigenvector of \(\mathbb{A}\) corresponding to the eigenvalue λ [17, 18, 21]. Here \(\mathbb{A}x^{k-1}\) and \(x^{[k-1]}\) are vectors, whose ith entries are

$$\bigl(\mathbb{A}x^{k-1} \bigr)_{i}=\sum _{i_{2},\ldots, i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}x_{i_{2}}\cdots x_{i_{k}} $$

and \((x^{[k-1]})_{i}=x_{i}^{k-1}\), respectively. Moreover, the spectral radius \(\rho(\mathbb{A})\) of a tensor \(\mathbb{A}\) is defined as

$$\rho(\mathbb{A})=\max \bigl\{ \vert \lambda \vert : \lambda \mbox{ is an eigenvalue of } \mathbb{A} \bigr\} . $$

Some properties of the spectral radius of a nonnegative tensor can be found in [3, 9, 14, 1618, 21, 2527].

Definition 1.1

([22])

Let \(\mathbb{A}\) and \(\mathbb{B}\) be two tensors with order \(m\geq2\) and \(k\geq1\) dimension n, respectively. The general product \(\mathbb {AB}\) of \(\mathbb{A}\) and \(\mathbb{B}\) is the following tensor \(\mathbb{C}\) with order \((m-1)(k-1)+1\) and dimension n:

$$c_{i\alpha_{1}\cdots\alpha_{m-1}}=\sum_{i_{2},\ldots, i_{m}=1}^{n}a_{ii_{2}\cdots i_{m}}b_{i_{2}\alpha_{1}} \cdots b_{i_{m}\alpha_{m-1}} \quad\bigl(i\in[n], \alpha_{1}, \ldots, \alpha_{m-1}\in[n]^{k-1} \bigr). $$

Definition 1.2

([22])

Let \(\mathbb{A}=(a_{i_{1}i_{2}\cdots i_{k}})\) and \(\mathbb {B}=(b_{i_{1}i_{2}\cdots i_{k}})\) be two order k dimension n tensors. We say that \(\mathbb{A}\) and \(\mathbb{B}\) are diagonal similar if there exists some invertible diagonal matrix \(D=(d_{11},d_{22},\ldots ,d_{nn})\) of order n such that \(\mathbb{B}=D^{-(k-1)}\mathbb{A}D\) with entries

$$b_{i_{1}i_{2}\cdots i_{k}}=d_{i_{1}i_{1}}^{-(k-1)}a_{i_{1}i_{2}\cdots i_{k}}d_{i_{2}i_{2}} \cdots d_{i_{k}i_{k}} . $$

Theorem 1.3

([22])

If the two orderkdimensionntensors\(\mathbb{A}\)and\(\mathbb {B}\)are diagonal similar, then they have the same eigenvalues including multiplicity and same spectral radius.

Definition 1.4

([9, 26])

Let \(\mathbb{A}\) be an order k dimensional n tensor (not necessarily nonnegative). If there exists a nonempty proper subset I of the set \([n]\), such that

$$ a_{i_{1}i_{2}\ldots i_{k}}=0 \quad\mbox{for all } i_{1}\in I \mbox{ and some } i_{j}\notin I \mbox{ where } j\in\{2,\ldots,k\}, $$

then \(\mathbb{A}\) is called weakly reducible (or sometimes I-weakly reducible). If \(\mathbb{A}\) is not weakly reducible, then \(\mathbb{A}\) is called weakly irreducible.

The ith slice of a tensor \(\mathbb{A}\) with order \(k\geq2\) and dimension n, denoted by \(\mathbb{A}_{i}\) in [23], is the subtensor of \(\mathbb{A}\) with order \(k-1\) and dimension n such that \((\mathbb{A}_{i})_{i_{2}\cdots i_{k}}=a_{ii_{2}\cdots i_{k}}\). Then the ith slice sum (also called “the ith row sum”) of \(\mathbb{A}\) is defined as

$$r_{i}(\mathbb{A})=\sum_{i_{2}, \ldots, i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}\quad \bigl(i\in[n] \bigr). $$

Lemma 1.5

([13, 25])

Let\(\mathbb{A}\)be a nonnegative tensor with order\(k\geq2\)and dimensionn. Then we have

$$ \min_{1\leq i\leq n}r_{i}(\mathbb{A})\leq\rho( \mathbb{A})\leq\max_{1\leq i\leq n}r_{i}(\mathbb{A}). $$
(1.1)

Moreover, if\(\mathbb{A}\)is weakly irreducible, then one of the equalities in (1.1) holds if and only if\(r_{1}(\mathbb{A})=r_{2}(\mathbb{A})=\cdots=r_{n}(\mathbb{A})\).

We denote by \(\binom{n}{r}\) the number of r-combinations of an n-element set, and let \(\binom{n}{r}=0\) if \(r>n\) or \(r<0\). Clearly, \(\binom{n}{r}=\frac{n!}{r!(n-r)!}\) when \(0\leq r\leq n\).

Lemma 1.6

([2])

Letn, k, andmbe positive integers. Then

  1. (1)

    \(\sum_{r=0}^{k}\binom{n}{r}\binom{m}{k-r}=\binom{n+m}{k}\) (\(n+m\geq k \));

  2. (2)

    \(\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1}\) (\(n\geq k \geq1 \)).

Let \(S=\{s_{1}, s_{2},\ldots, s_{n}\}\) be an n-element set, noting that \(s_{i}\neq s_{j}\) if \(i\neq j\).

Definition 1.7

Let \(n\geq2\), \(k\geq2\), \(\mathbb{A}\) be an order k dimension n tensor, we call \(\mathbb{A}\) a k-uniform tensor if its entries are defined as follows: \(a_{i_{1}i_{2}\cdots i_{k}} \in\mathbb{R}\) if \(\{i_{1}, i_{2}, \ldots, i_{k}\}\) is a k-element set or \(i_{1}=i_{2}=\cdots=i_{k}\), otherwise, \(a_{i_{1}i_{2}\cdots i_{k}}=0\).

Obviously, a 2-uniform tensor is an ordinary matrix. Let \(\mathbb {A}\) be a k-uniform tensor with order k dimension n. Then \(a_{i_{1}i_{2}\cdots i_{k}}\neq0\) implies \(\{i_{1}, i_{2},\ldots, i_{k}\} \) is a k-element set or \(i_{1}=i_{2}=\cdots=i_{k}\).

In this paper, we obtain a sharp upper bound on the spectral radius of a nonnegative k-uniform tensor in Sect. 2. By applying the bound to a nonnegative matrix, we can obtain the main result in [7]. In Sect. 3, we apply the bound to the adjacency spectral radius and signless Laplacian spectral radius of a uniform hypergraph and improve some known results in [4]. Furthermore, we give a characterization of a strongly connected k-uniform directed hypergraph and obtain some new results by applying the bound to the adjacency spectral radius and the signless Laplacian spectral radius of a uniform directed hypergraph in Sect. 4.

2 Main results

In this section, we obtain a sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and characterize when this bound is achieved. Furthermore, this bound deduces the main result in [7] for a nonnegative matrix.

Theorem 2.1

Let\(n\geq2\), \(k\geq2\), \(\mathbb{A}=(a_{i_{1}i_{2}\cdots i_{k}})\)be a nonnegativek-uniform tensor with orderkdimensionn, \(r_{i}=r_{i}(\mathbb{A})=\sum_{i_{2},\ldots, i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}\)for\(i\in[n]\)with\(r_{1}\geq r_{2}\geq\cdots\geq r_{n}\). LetMbe the largest diagonal element andN (>0) be the largest non-diagonal element of tensor\(\mathbb{A}\), \(N_{1}=N(k-2)!\binom{n-2}{k-2}\), \(\phi_{1}=r_{1}\), and

$$ \phi_{s}=\frac{1}{2} \Biggl\{ r_{s}+M-N_{1}+ \sqrt {(r_{s}-M+N_{1})^{2}+4N_{1} \sum_{t=1}^{s-1}(r_{t}-r_{s})} \Biggr\} $$
(2.1)

for\(2\leq s\leq n\). Then

$$\rho(\mathbb{A})\leq\min_{1\leq s\leq n}\phi_{s}. $$

Let\(\phi_{s}=\min_{1\leq l\leq n}\phi_{l}\). If\(\mathbb{A}\)is weakly irreducible, then

  1. (1)

    when\(k=2\), \(\rho(\mathbb{A})=\phi_{s}\)if and only if\(r_{1}=r_{2}=\cdots=r_{n}\)or for somet (\(2\leq t\leq s\)), \(\mathbb{A}\) satisfies the following conditions:

    1. (i)

      \(a_{ii}=M\)for\(1\leq i\leq t-1\);

    2. (ii)

      \(a_{ii_{2}}=N\)for\(1\leq i\leq n\), \(1\leq i_{2}\leq t-1\), and\(i\neq i_{2}\);

    3. (iii)

      \(r_{t}=r_{t+1}=\cdots=r_{n}\);

  2. (2)

    when\(k\geq3\), \(\rho(\mathbb{A})=\phi_{s}\)if and only if\(r_{1}=r_{2}=\cdots=r_{n}\).

Proof

Firstly, we show \(\rho(\mathbb{A})\leq\phi_{s}\) for \(1\leq s\leq n\).

If \(s=1\), then by Lemma 1.5 we have \(\rho(\mathbb{A})\leq r_{1}=\phi_{1}\). Now we only consider the cases of \(2\leq s\leq n\).

Let

$$U=\operatorname{diag}(x_{1},\ldots,x_{s-1},x_{s}, \ldots,x_{n}), $$

where \(x_{i}>0\) for \(1\leq i\leq n\), \(x_{i}^{k-1}=1+\frac{r_{i}-r_{s}}{\phi _{s}+N_{1}-M}\) for \(1\leq i\leq s-1\), and \(x_{s}=\cdots=x_{n}=1\).

Now we show \(x_{i}\geq1\) for \(1\leq i\leq s-1\). By \(r_{1}\geq r_{2}\geq \cdots\geq r_{n}\), we only need to show \(\phi_{s}+N_{1}-M>0\).

If \(\sum_{t=1}^{s-1}(r_{t}-r_{s})>0\), then by (2.1) we have

$$\phi_{s}>\frac{1}{2} \bigl(r_{s}+M-N_{1}+ \vert r_{s}-M+N_{1} \vert \bigr)\geq \frac {1}{2} \bigl(r_{s}+M-N_{1}-(r_{s}-M+N_{1}) \bigr)=M-N_{1}, $$

and thus \(\phi_{s}-M+N_{1}>0\).

If \(\sum_{t=1}^{s-1}(r_{t}-r_{s})=0\), then \(r_{1}=r_{2}=\cdots=r_{s}\). Thus \(\phi_{s}-M+N_{1}>0\) by \(r_{1}\geq M\) and \(\phi_{s}=r_{s}\) from (2.1).

Combining the above arguments, we know \(x_{i}\geq1\), and then U is an invertible diagonal matrix. Let \(\mathbb{B}=U^{-(k-1)}\mathbb{A}U=(b_{i_{1}\cdots i_{k}})\). By Theorem 1.3, we have

$$ \rho(\mathbb{A})=\rho(\mathbb{B}). $$
(2.2)

By (2.1), it is easy to see that

$$\phi_{s}^{2}-(r_{s}+M-N_{1}) \phi_{s}+(M-N_{1})r_{s}-N_{1}\sum _{t=1}^{s-1}(r_{t}-r_{s}) =0. $$

Then

$$\begin{aligned} (\phi_{s}-M+N_{1}) (\phi_{s}-r_{s})&=N_{1} \sum_{t=1}^{s-1}(r_{t}-r_{s}) =N_{1}\sum_{t=1}^{s-1}( \phi_{s}-M+N_{1}) \bigl(x_{t}^{k-1}-1 \bigr) \\&=N_{1}(\phi_{s}-M+N_{1}) \Biggl(\sum _{t=1}^{s-1}x_{t}^{k-1}-(s-1) \Biggr).\end{aligned} $$

Therefore, \(\phi_{s}=r_{s}+ N_{1}\sum_{t=1}^{s-1}x_{t}^{k-1}-N_{1}(s-1)\) and thus

$$ \sum_{t=1}^{s-1}x_{t}^{k-1}= \frac{\phi_{s}-r_{s}+(s-1)N_{1}}{N_{1}}. $$
(2.3)

In the following we show \(r_{i}(\mathbb{B})\leq\phi_{s}\) for any \(i\in [n]=\{1,2,\ldots,n\}\).

Let \(S(\mathbb{A})=\{\{i, i_{2}, \ldots, i_{k}\}|a_{ii_{2}\cdots i_{k}}\neq0\}\). Since M is the largest diagonal element and \(N>0\) is the largest non-diagonal element of tensor \(\mathbb{A}\), by Definition 1.2, we have

$$\begin{aligned} r_{i}(\mathbb{B}) ={}&r_{i} \bigl(U^{-(k-1)}\mathbb{A}U \bigr) \\ ={}&\sum_{i_{2},\ldots, i_{k}=1}^{n} \bigl(U^{-(k-1)} \bigr)_{ii}a_{ii_{2}\cdots i_{k}}U_{i_{2}i_{2}}\cdots U_{i_{k}i_{k}} \\ ={}&\frac{1}{x_{i}^{k-1}}\sum_{i_{2},\ldots,i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}x_{i_{2}} \cdots x_{i_{k}} \\ ={}&\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}+\sum_{i_{2},\ldots ,i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}(x_{i_{2}} \cdots x_{i_{k}}-1) \Biggr\} \\ =&\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}+a_{i\cdots i} \bigl(x_{i}^{k-1}-1 \bigr) \\ &+\sum_{i_{2},\ldots,i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}(x_{i_{2}} \cdots x_{i_{k}}-1)-a_{i\cdots i} \bigl(x_{i}^{k-1}-1 \bigr) \Biggr\} \\ \leq{}&\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}+M \bigl(x_{i}^{k-1}-1 \bigr) \\ &+\sum_{i_{2},\ldots,i_{k}=1}^{n}a_{ii_{2}\cdots i_{k}}(x_{i_{2}} \cdots x_{i_{k}}-1)-a_{i\cdots i} \bigl(x_{i}^{k-1}-1 \bigr) \Biggr\} \\ \leq{}&\frac{1}{x_{i}^{k-1}} \biggl\{ r_{i}+M \bigl(x_{i}^{k-1}-1 \bigr) +N(k-1)!\sum_{\{i,i_{2},\ldots, i_{k}\}\in S(\mathbb {A})}(x_{i_{2}}\cdots x_{i_{k}}-1) \biggr\} \\ \leq{}&\frac{1}{x_{i}^{k-1}} \biggl\{ r_{i}+M \bigl(x_{i}^{k-1}-1 \bigr) \\ &+N(k-1)!\sum_{\{i,i_{2},\ldots, i_{k}\}\in S(\mathbb{A})} \biggl(\frac {x_{i_{2}}^{k-1}+\cdots+x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \biggr\} \\ \leq{}& \frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}+M \bigl(x_{i}^{k-1}-1 \bigr) \\ &+N(k-1)!\sum_{r=0}^{k-1}\sum _{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \biggl(\frac{x_{i_{2}}^{k-1}+\cdots +x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \Biggr\} \\ ={}&\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}+M \bigl(x_{i}^{k-1}-1 \bigr) \\ &+N(k-1)!\sum_{r=0}^{k-2}\sum _{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \biggl(\frac{x_{i_{2}}^{k-1}+\cdots +x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \Biggr\} , \end{aligned}$$

where \(N_{r}^{s}=\{\{i_{2},\ldots,i_{k}\}\mid i_{2},\ldots,i_{k}\in\{ 1,2,\ldots, n\}\setminus\{i\}\), and there are exactly r elements in \(\{i_{2},\ldots,i_{k}\}\) such that they are not less than s} for \(0\leq r\leq k-1\). Obviously, the family of all \((k-1)\)-element subsets of \(\{1,2,\ldots, n\}\setminus\{i\}\) is just equal to \(\bigcup_{r=0}^{k-1}N_{r}^{s}\). Thus we have

$$ r_{i}(\mathbb{B})\leq M+\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}-M+N(k-1)!\sum_{r=0}^{k-2} \sum_{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \biggl(\frac{x_{i_{2}}^{k-1}+\cdots +x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \Biggr\} , $$
(2.4)

and the equality holds in (2.4) if and only if (a), (b), (c), and (d) hold:

  1. (a)

    \(x_{i}^{k-1}=1\) or \(a_{i\cdots i}=M\) for \(x_{i}>1\);

  2. (b)

    for any \(\{i,i_{2},\ldots,i_{k}\}\in S(\mathbb{A})\), \(x_{i_{2}}\cdots x_{i_{k}}=1\) or \(a_{ii_{2}\cdots i_{k}}=N\) for \(x_{i_{2}}\cdots x_{i_{k}}>1\);

  3. (c)

    \(x_{i_{2}}=\cdots=x_{i_{k}}\) for any \(\{i,i_{2},\ldots,i_{k}\}\in S(\mathbb{A})\);

  4. (d)

    \(\sum_{\{i,i_{2},\ldots, i_{k}\}\in S(\mathbb{A})} (\frac {x_{i_{2}}^{k-1}+\cdots+x_{i_{k}}^{k-1}}{k-1}-1 )=\sum_{r=0}^{k-1}\sum_{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} (\frac {x_{i_{2}}^{k-1}+\cdots+x_{i_{k}}^{k-1}}{k-1}-1 )\).

Case 1:\(s\leq i\leq n\).

Clearly, \(\{i_{2},\ldots, i_{k}\}\in N_{r}^{s}\) implies that we should choose r elements from the set \(\{s,\ldots, n\}\setminus\{i\}\) and choose \(k-1-r\) elements from the set \(\{1,2,\ldots, s-1\}\), then we have

$$ \sum_{r=0}^{k-2}\sum _{\{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} 1=\sum_{r=0}^{k-2} \binom{s-1}{k-1-r}\binom{n-s}{r}. $$
(2.5)

Similarly, we have

$$ \begin{aligned}[b] &\sum_{r=0}^{k-2}\sum _{\{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \bigl(x_{i_{2}}^{k-1}+ \cdots+x_{i_{k}}^{k-1} \bigr) \\ &\quad=\sum_{r=0}^{k-2} \binom{s-2}{k-2-r}\binom{n-s}{r} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1} \Biggr)\\&\qquad+\sum_{r=0}^{k-2} \binom{s-1}{k-1-r}\binom{n-s-1}{r-1} \Biggl(\sum_{t=s}^{n}x_{t}^{k-1}-x_{i}^{k-1} \Biggr).\end{aligned} $$
(2.6)

We note \(x_{s}=\cdots=x_{n}=1\) and \(r_{1}\geq\cdots\geq r_{s}\geq\cdots \geq r_{i}\geq\cdots\geq r_{n}\), then by (2.3), (2.4), (2.5), and (2.6), we have

$$\begin{aligned} r_{i}(\mathbb{B}) \leq {}&r_{i}+N(k-1)!\sum _{r=0}^{k-2}\sum_{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \biggl(\frac{x_{i_{2}}^{k-1}+\cdots+x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \\ \leq{}&r_{s}+N(k-2)!\sum_{r=0}^{k-2} \binom{s-2}{k-2-r}\binom{n-s}{r} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1} \Biggr) \\ &+N(k-2)!\sum_{r=0}^{k-2}\binom{s-1}{k-1-r} \binom{n-s-1}{r-1} \Biggl(\sum_{t=s}^{n}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) \\ &-N(k-1)!\sum_{r=0}^{k-2}\binom{s-1}{k-1-r} \binom{n-s}{r} \\ ={}& r_{s}+N(k-2)!\binom{n-2}{k-2}\sum_{t=1}^{s-1}x_{t}^{k-1} +N(k-2)!\sum_{r=0}^{k-2}\binom{s-1}{k-1-r} \binom{n-s-1}{r-1}(n-s) \\ & -N(k-1)!\sum_{r=0}^{k-2}\binom{s-1}{k-1-r} \binom{n-s}{r} \\ ={}& r_{s}+N_{1}\sum_{t=1}^{s-1}x_{t}^{k-1} \\ &+N(k-2)!\sum_{r=0}^{k-2}\binom{s-1}{k-1-r} \biggl[\binom{n-s-1}{r-1}(n-s) -(k-1)\binom{n-s}{r} \biggr] \\ ={}& r_{s}+N_{1}\sum_{t=1}^{s-1}x_{t}^{k-1}-N(k-2)! \sum_{r=0}^{k-2}\binom {s-1}{k-1-r} \binom{n-s}{r}(k-1-r) \\ ={}& r_{s}+N_{1}\sum_{t=1}^{s-1}x_{t}^{k-1}-N(k-2)! \sum_{r=0}^{k-2}(s-1)\binom{s-2}{k-2-r} \binom{n-s}{r} \\ ={}& r_{s}+N_{1}\sum _{t=1}^{s-1}x_{t}^{k-1}-N(k-2)!(s-1) \binom{n-2}{k-2} \\ = {}&r_{s}+N_{1}\sum _{t=1}^{s-1}x_{t}^{k-1}-(s-1)N_{1} \\ ={}&\phi_{s}, \end{aligned}$$

where equality holds if and only if the following condition (e) holds: (e) \(r_{i}=r_{s}\).

Case 2:\(1\leq i\leq s-1\).

Subcase 2.1:\(s\geq3\).

Clearly, \(\{i_{2},\ldots, i_{k}\}\in N_{r}^{s}\) implies that we should choose r elements from the set \(\{s,\ldots, n\}\) and choose \(k-1-r\) elements from the set \(\{1,2,\ldots, s-1\}\setminus \{i\}\), then \(\sum_{r=0}^{k-2}\sum_{\{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} 1=\sum_{r=0}^{k-2}\binom{s-2}{k-1-r}\binom{n-s+1}{r}\). Similarly, we have

$$\begin{aligned} &\sum_{r=0}^{k-2}\sum _{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \bigl(x_{i_{2}}^{k-1}+ \cdots+x_{i_{k}}^{k-1} \bigr) \\ &\quad=\sum_{r=0}^{k-2}\binom{s-3}{k-r-2} \binom{n-s+1}{r} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) \\ &\qquad+\sum_{r=0}^{k-2}\binom{s-2}{k-1-r} \binom{n-s}{r-1} \Biggl(\sum_{t=s}^{n}x_{t}^{k-1} \Biggr) \\ &\quad=\binom{n-2}{k-2} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) +\sum_{r=0}^{k-2}\binom{s-2}{k-1-r} \binom{n-s}{r-1}(n-s+1). \end{aligned}$$

Then

$$\begin{aligned} &N(k-1)!\sum_{r=0}^{k-2}\sum _{ \{i_{2},\ldots, i_{k}\}\in N_{r}^{s}} \biggl(\frac{x_{i_{2}}^{k-1}+\cdots +x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \\ &\quad=N_{1} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) +N(k-2)!\sum_{r=0}^{k-2} \binom{s-2}{k-1-r}\binom{n-s}{r-1}(n-s+1) \\ &\qquad-N(k-1)!\sum_{r=0}^{k-2}\binom{s-2}{k-1-r} \binom{n-s+1}{r} \\ &\quad=N_{1} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) -N(k-2)!\sum_{r=0}^{k-2}(k-1-r) \binom{s-2}{k-1-r}\binom{n-s+1}{r} \\ &\quad=N_{1} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) -N(k-2)!\sum_{r=0}^{k-2}(s-2) \binom{s-3}{k-r-2}\binom{n-s+1}{r} \\ &\quad=N_{1} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr) -N(k-2)!(s-2)\binom{n-2}{k-2} \\ &\quad=N_{1} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr)-(s-2)N_{1}. \end{aligned}$$

Thus, by (2.3), (2.4), and the definition of \(x_{i}^{k-1}\) for \(1\leq i\leq s-1\), we have

$$\begin{aligned} r_{i}(\mathbb{B}) &\leq M+\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}-M+N_{1} \Biggl(\sum_{t=1}^{s-1}x_{t}^{k-1}-x_{i}^{k-1} \Biggr)-(s-2)N_{1} \Biggr\} \\ &=M-N_{1}+\frac{1}{x_{i}^{k-1}} \Biggl\{ r_{i}-M+N_{1} \sum_{t=1}^{s-1}x_{t}^{k-1}-(s-2)N_{1} \Biggr\} \\ &=\phi_{s}. \end{aligned}$$

Subcase 2.2:\(s=2\).

In this case, we need to show \(r_{1}(\mathbb{B})\leq\phi_{2}\). Noting that \(x_{2}=\cdots=x_{n}=1\), by (2.4) and the definition of \(N_{r}^{2}\), we have

$$\begin{aligned} r_{1}(\mathbb{B}) \leq{}& M+\frac{1}{x_{1}^{k-1}} \Biggl\{ r_{1}-M+N(k-1)!\sum _{r=0}^{k-2}\sum_{\{i_{2},\ldots, i_{k}\}\in N_{r}^{2}} \biggl(\frac{x_{i_{2}}^{k-1}+\cdots +x_{i_{k}}^{k-1}}{k-1}-1 \biggr) \Biggr\} \\ ={}&M+\frac{1}{x_{1}^{k-1}}(r_{1}-M). \end{aligned}$$

By (2.3), we have \(x_{1}^{k-1}=\frac{\phi_{2}-r_{2}+N_{1}}{N_{1}}\). Then, by (2.1) and the definition of \(\phi_{2}\), we have

$$\begin{aligned} &\frac{1}{x_{1}^{k-1}}(r_{1}-M) \\ &\quad=\frac{N_{1}(r_{1}-M)}{\phi_{2}-r_{2}+N_{1}} \\ &\quad=\frac{2N_{1}(r_{1}-M)}{N_{1}+M-r_{2}+\sqrt{(N_{1}-M+r_{2})^{2}+4N_{1}(r_{1}-r_{2})}} \\ &\quad=\frac{2N_{1}(r_{1}-M)(N_{1}+M-r_{2}-\sqrt {(N_{1}-M+r_{2})^{2}+4N_{1}(r_{1}-r_{2})})}{(N_{1}+M-r_{2})^{2}-((N_{1}-M+r_{2})^{2}+4N_{1}(r_{1}-r_{2}))} \\ &\quad=-\frac{N_{1}+M-r_{2}-\sqrt{(N_{1}-M+r_{2})^{2}+4N_{1}(r_{1}-r_{2})}}{2}. \end{aligned}$$

Thus

$$\begin{aligned} r_{1}(\mathbb{B})\leq M+\frac{1}{x_{1}^{k-1}}(r_{1}-M)= \phi_{2}. \end{aligned}$$

Combining Subcases 2.1 and 2.2, we have \(r_{i}(\mathbb{B})\leq\phi_{s}\) for \(1\leq i\leq s-1\), and combining Cases 1 and 2, we have \(r_{i}(\mathbb{B})\leq\phi_{s}\) for \(1\leq i\leq n\). Then \(\rho(\mathbb{A})=\rho(\mathbb{B})\leq\max_{1\leq i\leq n}r_{i}(\mathbb{B})\leq\phi_{s}\) for \(2\leq s\leq n\) by (2.2) and Lemma 1.5.

Therefore, we know \(\rho(\mathbb{A})\leq\phi_{s}\) for \(1\leq s\leq n\) and thus \(\rho(\mathbb{A})\leq\min_{1\leq s\leq n}\phi_{s}\).

Now suppose that \(\mathbb{A}\) is weakly irreducible. Then \(\mathbb{B}\) is also weakly irreducible by \(\mathbb{B}=U^{-(k-1)}\mathbb{A}U\). Let \(\phi_{s}=\min_{1\leq l\leq n}\phi_{l}\).

Case 1:\(s=1\).

By Lemma 1.5 and the fact \(r_{1}=\max_{1\leq i\leq n}r_{i}\), we have \(\rho(\mathbb{A})= \phi_{1}\) if and only if \(r_{1}=r_{2}=\cdots=r_{n}\).

Case 2:\(2\leq s\leq n\).

Then \(\rho(\mathbb{B})= \max_{1\leq i\leq n}r_{i}(\mathbb{B})\) and thus \(r_{1}(\mathbb{B})=r_{2}(\mathbb{B})=\cdots=r_{n}(\mathbb{B})=\phi_{s}\) by \(\phi_{s}=\rho(\mathbb{A})=\rho(\mathbb{B})\leq\max_{1\leq i\leq n}r_{i}(\mathbb{B})\leq\phi_{s}\) and Lemma 1.5. Therefore, (a), (b), (c), and (d) hold for any \(i\in[n]\), (e) holds for any \(i\in\{s,\ldots, n\}\).

Subcase 2.1:\(r_{1}=r_{s}\).

By \(r_{1}\geq r_{2}\geq\cdots\geq r_{n}\) and (e) \(r_{i}=r_{s}\) for \(s\leq i\leq n\), then we have \(r_{1}= r_{2}=\cdots=r_{n}\).

Subcase 2.2:\(r_{1}>r_{s}\).

Let t be the smallest integer such that \(r_{t}=r_{s}\) for \(1< t\leq s\). Since \(r_{s}=r_{s+1}=\cdots=r_{n}\), we have \(r_{t}=r_{t+1}=\cdots =r_{n}\) and \(x_{i}>1\) for \(i=1,2,\ldots,t-1\).

When \(k\geq3\), (c) and (d) cannot hold at the same time. Because there are r elements in \(\{i_{2},\ldots, i_{k}\}\) chosen from \(\{s,\ldots, n\}\) and \(k-1-r\) elements in \(\{i_{2},\ldots, i_{k}\}\) chosen from \(\{1,\ldots, s-1\} \), and then \(x_{i_{2}}=\cdots=x_{i_{k}}\) cannot hold when \(1\leq r\leq k-2\). Thus we only consider the case of \(k=2\).

In the case of \(k=2\), (d) implies

$$\sum_{\{i,i_{2}\}\in S(\mathbb{A})} (x_{i_{2}}-1 )=\sum _{r=0}^{1}\sum_{ \{i_{2}\}\in N_{r}^{s}} (x_{i_{2}}-1 )=\sum_{\substack{{i_{2}=1}\\ i_{2}\neq i}}^{t-1} (x_{i_{2}}-1 ). $$

Then (i)–(iii) follow from (a), (b), (c), (d) for \(1\leq i\leq n\), and (e) for \(s\leq i\leq n\), and thus (1) and (2) hold.

Conversely, if \(r_{1}=r_{2}=\cdots=r_{n}\), then by Lemma 1.5, \(\rho(\mathbb{A})=\phi_{1}=r_{1}\). If \(k=2\) and (i)–(iii) hold, then (a), (b), (c), and (d) hold for \(1\leq i\leq n\), (e) holds for \(s\leq i\leq n\). Then we have \(r_{i}(\mathbb{B})=\phi_{s}\) for \(1\leq i\leq n\). Therefore, by Lemma 1.5, we have \(\rho(\mathbb{A})=\rho(\mathbb {B})=\max_{1\leq i\leq n}r_{i}(\mathbb{B})=\phi_{s}\) for \(s=2,\ldots,n\). □

Let \(k=2\). Then \(\mathbb{A}\) is a matrix, weak irreducibility for tensors corresponds to irreducibility for matrices, and slice sum for tensors corresponds to row sum for matrices. The following result follows immediately.

Corollary 2.2

([7], Theorem 2.1)

LetAbe an\(n\times n\)nonnegative matrix with row sums\(r_{1},r_{2},\ldots,r_{n}\), where\(r_{1}\geq r_{2}\geq \cdots\geq r_{n}\). LetMbe the largest diagonal element andNbe the largest non-diagonal element ofA. Suppose that\(N>0\). Let\(\phi _{1}=r_{1}\)and, for\(2\leq s\leq n\),

$$ \phi_{s}=\frac{1}{2} \Biggl(r_{s}+M-N+ \sqrt{(r_{s}-M+N)^{2}+4N \sum _{t=1}^{s-1}(r_{t}-r_{s})} \Biggr). $$
(2.7)

Then\(\rho(A)\leq\min_{1\leq s\leq n}\phi_{s}\).

Let\(\phi_{s}=\min_{1\leq l\leq n}\phi_{l}\). IfAis irreducible, then\(\rho(A)=\phi_{s}\)if and only if\(r_{1}=r_{2}=\cdots=r_{n}\)or for somet (\(2\leq t\leq s\)), Asatisfies the following conditions:

  1. (i)

    \(a_{ii}=M\)for\(1\leq i\leq t-1\);

  2. (ii)

    \(a_{ii_{2}}=N\)for\(1\leq i\leq s-1\)and\(1\leq i_{2}\leq t-1\)with\(i\neq i_{2}\);

  3. (iii)

    \(r_{t}=\cdots=r_{n}\);

  4. (iv)

    \(a_{ii_{2}}=N\)for\(s\leq i\leq n\)and\(1\leq i_{2}\leq t-1\).

3 Applications to a k-uniform hypergraph

A hypergraph is a natural generalization of an ordinary graph [1].

A hypergraph \(\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))\) on n vertices is a set of vertices, say, \(V(\mathcal{H})=\{1,2,\ldots,n\}\) and a set of edges, say, \(E(\mathcal{H})=\{e_{1},e_{2},\ldots,e_{m}\}\), where \(e_{i}=\{i_{1},i_{2},\ldots,i_{l}\}\), \(i_{j}\in[n]\), \(j=1,2,\ldots,l\). Let \(k\geq2\), if \(\mid e_{i}\mid=k\) for any \(i=1,2,\ldots,m\), then \(\mathcal{H}\) is called a k-uniform hypergraph. When \(k=2\), then \(\mathcal{H}\) is an ordinary graph. The degree \(d_{i}\) of vertex i is defined as \(d_{i}=|\{e_{j}:i\in e_{j}\in E(\mathcal{H})\}|\). If \(d_{i}=d\) for any vertex i of a hypergraph \(\mathcal{H}\), then \(\mathcal{H}\) is called d-regular. A walkW of length in \(\mathcal{H}\) is a sequence of alternate vertices and edges: \(v_{0},e_{1},v_{1},e_{2},\ldots,e_{\ell},v_{\ell}\), where \(\{v_{i},v_{i+1}\}\subseteq e_{i+1}\) for \(i=0,1,\ldots,\ell-1\). The hypergraph \(\mathcal{H}\) is said to be connected if every two vertices are connected by a walk.

Definition 3.1

([6, 18])

Let \(\mathcal{H}=(V(\mathcal{H}),E(\mathcal{H}))\) be a k-uniform hypergraph on n vertices. The adjacency tensor of \(\mathcal{H}\) is defined as the order k dimension n tensor \(\mathbb{A}(\mathcal{H})\), whose \((i_{1}i_{2}\cdots i_{k})\)-entry is

$$\bigl(\mathbb{A}(\mathcal{H}) \bigr)_{i_{1}i_{2}\cdots i_{k}}=\textstyle\begin{cases} \frac{1}{(k-1)!}, & \mbox{if } \{i_{1},i_{2},\ldots,i_{k}\}\in E(\mathcal{H}), \\ 0, & \mbox{otherwise} . \end{cases} $$

Let \(\mathbb{D}(\mathcal{H})\) be an order k dimension n diagonal tensor with its diagonal entry \(\mathbb{D}_{ii\cdots i}\) being \(d_{i}\), the degree of vertex i for all \(i\in V(\mathcal{H})=[n]\). Then \(\mathbb{Q}(\mathcal{H})=\mathbb{D(\mathcal{H})}+ \mathbb {A(\mathcal{H})} \) is called the signless Laplacian tensor of the hypergraph \(\mathcal{H}\). Clearly, the adjacency tensor and the signless Laplacian tensor of a k-uniform hypergraph \(\mathcal{H}\) are nonnegative symmetric k-uniform tensors and, for any \(1\leq i\leq n\),

$$r_{i} \bigl(\mathbb{A(\mathcal{H})} \bigr)=\sum _{i_{2},\ldots, i_{k}=1}^{n} \bigl(\mathbb {A(\mathcal{H})} \bigr)_{ii_{2}\cdots i_{k}} =d_{i}, r_{i} \bigl(\mathbb{Q( \mathcal{H})} \bigr)=\sum_{i_{2},\ldots, i_{k}=1}^{n} \bigl( \mathbb {Q(\mathcal{H})} \bigr)_{ii_{2}\cdots i_{k}} =2d_{i}. $$

It was proved in [9, 20] that a k-uniform hypergraph \(\mathcal{H}\) is connected if and only if its adjacency tensor \(\mathbb{A}(\mathcal{H})\) (and thus the signless Laplacian tensor \(\mathbb{Q}(\mathcal{H})\)) is weakly irreducible.

Recently, several papers studied the spectral radii of the adjacency tensor \(\mathbb{A}(\mathcal{H})\) and the signless Laplacian tensor \(\mathbb{Q}(\mathcal{H})\) of a k-uniform hypergraph \(\mathcal{H}\) (see [4, 6, 18, 19, 27, 28] and so on). In this section, we apply Theorem 2.1 to the adjacency tensor \(\mathbb{A}(\mathcal{H})\) and the signless Laplacian tensor \(\mathbb{Q}(\mathcal{H})\) of a k-uniform hypergraph \(\mathcal{H}\). If \(k=2\), we obtain Theorem 3.1 and Theorem 4.2 in [7]. If \(k\geq3\), we improve some known results about the bounds of \(\rho (\mathbb{A}(\mathcal{H}))\) and \(\rho(\mathbb{Q}(\mathcal{H}))\) in [4].

Theorem 3.2

Let\(k\geq3\), \(\mathcal{H}\)be ak-uniform hypergraph with degree sequence\(d_{1}\geq\cdots\geq d_{n}\), \(\mathbb{ A}(\mathcal{H})\)be the adjacency tensor of\(\mathcal{H}\). Let\(A_{1}=\frac{1}{k-1}\binom{n-2}{k-2}\), \(\phi_{1}=d_{1}\), and

$$ \phi_{s}=\frac{1}{2} \Biggl\{ d_{s}-A_{1}+ \sqrt {(d_{s}+A_{1})^{2}+4A_{1} \sum_{t=1}^{s-1}(d_{t}-d_{s})} \Biggr\} $$
(3.1)

for\(2\leq s\leq n\). Then

$$\begin{aligned} \rho \bigl(\mathbb{A}(\mathcal{H}) \bigr)&\leq\min _{1\leq s\leq n}\phi_{s}. \end{aligned}$$
(3.2)

If\(\mathcal{H}\)is connected, then the equality in (3.2) holds if and only if\(\mathcal{H}\)is regular.

Proof

Let \(\mathbb{A}=\mathbb{A}(\mathcal{H})\). We apply Theorem 2.1 to \(\mathbb{A}(\mathcal{H})\), then we have \(M=0\), \(N=\frac{1}{(k-1)!}\), \(r_{i}=d_{i}\) for \(1\leq i\leq n\), \(A_{1}=N_{1}\), and (3.1) is from (2.1). Thus (3.2) holds by Theorem 2.1.

If \(\mathcal{H}\) is connected, then by Theorem 2.1 the equality in (3.2) holds if and only if \(r_{1}(\mathbb{A(\mathcal{H})})=r_{2}(\mathbb{A(\mathcal{H})})=\cdots =r_{n}(\mathbb{A(\mathcal{H})})\), which says exactly that \(\mathcal{H}\) is regular, since \(r_{i}(\mathbb{A(\mathcal{H})})=d_{i}\) for any \(1\leq i\leq n\). □

Theorem 3.3

Let\(k\geq3\), \(\mathcal{H}\)be ak-uniform hypergraph with degree sequence\(d_{1}\geq\cdots\geq d_{n}\), \(\mathbb{ Q}(\mathcal{H})\)be the signless Laplacian tensor of\(\mathcal {H}\). Let\(A_{1}=\frac{1}{k-1}\binom{n-2}{k-2}\), \(\psi_{1}=2d_{1}\), and

$$ \psi_{s}=\frac{1}{2} \Biggl\{ 2d_{s}+d_{1}-A_{1}+ \sqrt {(2d_{s}-d_{1}+A_{1})^{2}+8A_{1} \sum_{t=1}^{s-1}(d_{t}-d_{s})} \Biggr\} $$
(3.3)

for\(2\leq s\leq n\). Then

$$ \rho \bigl(\mathbb{Q}(\mathcal{H}) \bigr)\leq\min _{1\leq s\leq n}\psi_{s}. $$
(3.4)

If\(\mathcal{H}\)is connected, then the equality in (3.4) holds if and only if\(\mathcal{H}\)is regular.

Proof

Let \(\mathbb{A}=\mathbb{Q}(\mathcal{H})\). We apply Theorem 2.1 to \(\mathbb{Q}(\mathcal{H})\), then we have \(M=d_{1}\), \(N=\frac{1}{(k-1)!}\), \(r_{i}=2d_{i}\) for \(1\leq i\leq n\), \(A_{1}=N_{1}\), and (3.3) is from (2.1). Thus (3.4) holds by Theorem 2.1.

If \(\mathcal{H}\) is connected, then by Theorem 2.1 the equality in (3.4) holds if and only if \(r_{1}(\mathbb{Q(\mathcal{H})})=r_{2}(\mathbb{Q(\mathcal{H})})=\cdots =r_{n}(\mathbb{Q(\mathcal{H})})\), which says exactly that \(\mathcal{H}\) is regular, since \(r_{i}(\mathbb{Q(\mathcal{H})})=2d_{i}\) for any \(1\leq i\leq n\). □

4 Applications to k-uniform directed hypergraph

Directed hypergraphs have found applications in imaging processing [8], optical network communications [15], computer science and combinatorial optimization [10]. However, unlike spectral theory of undirected hypergraphs, there are very few results in spectral theory of directed hypergraphs.

A directed hypergraph \(\overrightarrow{\mathcal{H}}\) is a pair \((V(\overrightarrow{\mathcal{H}}), E(\overrightarrow{\mathcal{H}}))\), where \(V(\overrightarrow{\mathcal{H}})=[n]\) is the set of vertices and \(E(\overrightarrow{\mathcal{H}})=\{e_{1}, e_{2}, \ldots, e_{m}\}\) is the set of arcs. An arc \(e\in E(\overrightarrow{\mathcal{H}})\) is a pair \(e=(j_{1},e(j_{1}))\), where \(e(j_{1})=\{j_{2},\ldots,j_{t}\}\), \(j_{l}\in V(\overrightarrow{\mathcal{H}})\), and \(j_{l}\neq j_{h}\) if \(l\neq h\) for \(l, h\in[t]\) and \(t\in[n]\). The vertex \(j_{1}\) is called the tail (or out-vertex) and every other vertex \(j_{2},\ldots,j_{t}\) is called a head (or in-vertex) of the arc e. The out-degree of a vertex \(j\in V(\overrightarrow{\mathcal{H}})\) is defined as \(d_{j}^{+}=|E_{j}^{+}|\), where \(E_{j}^{+}=\{e\in E(\overrightarrow{\mathcal{H}}): j \mbox{ is the tail of } e\}\). If for any \(j\in V(\overrightarrow{\mathcal{H}})\), the degree \(d_{j}^{+}\) has the same value d, then \(\overrightarrow{\mathcal{H}}\) is called a directed d-out-regular hypergraph.

For a vertex \(i\in V(\overrightarrow{\mathcal{H}})\), we denote by \(E_{i}\) the set of arcs containing the vertex i, i.e., \(E_{i}=\{e\in E(\overrightarrow{\mathcal{H}}): i\in e\}\). Two distinct vertices i and j are weak-connected if there is a sequence of arcs \((e_{1},\ldots,e_{t})\) such that \(i\in e_{1}\), \(j\in e_{t}\), and \(e_{r}\cap e_{r+1}\neq\emptyset\) for all \(r\in[t-1]\). Two distinct vertices i and j are strong-connected, denoted by \(i\rightarrow j\), if there is a sequence of arcs \((e_{1},\ldots,e_{t})\) such that i is the tail of \(e_{1}\), j is a head of \(e_{t}\), and a head of \(e_{r}\) is the tail of \(e_{r+1}\) for all \(r\in[t-1]\). A directed hypergraph is called weakly connected if every pair of different vertices of \(\overrightarrow{\mathcal{H}}\) is weak-connected. A directed hypergraph is called strongly connected if every pair of different vertices i and j of \(\overrightarrow{\mathcal{H}}\) satisfies \(i\rightarrow j\) and \(j\rightarrow i\).

Similar to the definition of a k-uniform hypergraph, we define a k-uniform directed hypergraph as follows: A directed hypergraph \(\overrightarrow{\mathcal{H}}=(V(\overrightarrow {\mathcal{H}}), E(\overrightarrow{\mathcal{H}}))\) is called a k-uniform directed hypergraph if \(|e|=k\) for any arc \(e\in E(\overrightarrow{\mathcal{H}})\). When \(k=2\), then \(\overrightarrow{\mathcal{H}}\) is an ordinary digraph.

The following definition for the adjacency tensor and signless Laplacian tensor of a directed hypergraph was proposed by Chen and Qi in [5].

Definition 4.1

([5])

Let \(\overrightarrow{\mathcal{H}}=(V(\overrightarrow{\mathcal{H}}), E(\overrightarrow{\mathcal{H}}))\) be a k-uniform directed hypergraph. The adjacency tensor of the directed hypergraph \(\overrightarrow {\mathcal{H}}\) is defined as the order k dimension n tensor \(\mathbb {A}(\overrightarrow{\mathcal{H}})\), whose \((i_{1}i_{2}\cdots i_{k})\)-entry is

$$\bigl(\mathbb{A}(\overrightarrow{\mathcal{H}}) \bigr)_{i_{1}\cdots i_{k}}=\textstyle\begin{cases} \frac{1}{(k-1)!}, & \mbox{if } (i_{1},e(i_{1}))\in E(\overrightarrow{\mathcal{H}}) \mbox{ and } e(i_{1})=(i_{2},\ldots ,i_{k}),\\ 0, & \mbox{otherwise} . \end{cases} $$

Let \(\mathbb{D}(\overrightarrow{\mathcal{H}})\) be an order k dimension n diagonal tensor with its diagonal entry \(d_{ii\cdots i}\) being \(d_{i}^{+}\), the out-degree of vertex i, for all \(i\in V(\overrightarrow{\mathcal{H}})=[n]\). Then \(\mathbb{Q}(\overrightarrow{\mathcal{H}})=\mathbb{D(\overrightarrow {\mathcal{H}})}+ \mathbb{A(\overrightarrow{\mathcal{H}})} \) is the signless Laplacian tensor of the directed hypergraph \(\overrightarrow {\mathcal{H}}\).

Clearly, the adjacency tensor and the signless Laplacian tensor of a k-uniform directed hypergraph \(\overrightarrow{\mathcal{H}}\) are nonnegative k-uniform tensors, but not symmetric in general. For any \(1\leq i\leq n\), we have

$$r_{i} \bigl(\mathbb{A(\overrightarrow{\mathcal{H}})} \bigr)=\sum _{i_{2},\ldots, i_{k}=1}^{n} \bigl(\mathbb{A(\overrightarrow{ \mathcal{H}})} \bigr)_{ii_{2}\cdots i_{k}} =d_{i}^{+} $$

and

$$r_{i} \bigl(\mathbb{Q(\overrightarrow{\mathcal{H}})} \bigr)=\sum _{i_{2},\ldots, i_{k}=1}^{n} \bigl(\mathbb{Q(\overrightarrow{ \mathcal{H}})} \bigr)_{ii_{2}\cdots i_{k}} =2d_{i}^{+}. $$

The following statement is an alternative explanation of weak irreducibility.

Definition 4.2

([9, 12])

Suppose that \(\mathbb{A}=(a_{i_{1}i_{2}\ldots i_{k}})_{1\le i_{j}\le n (j=1, \ldots, k)}\) is a nonnegative tensor of order k and dimension n. We call a nonnegative matrix \(G(\mathbb{A})\) the representation associated matrix to the nonnegative tensor \(\mathbb{A}\) if the \((i, j)\)th entry of \(G(\mathbb{A})\) is defined to be the summation of \(a_{ii_{2}\ldots i_{k}}\) with indices \(\{i_{2},\ldots, i_{k}\}\ni j\). We call the tensor \(\mathbb {A}\) weakly reducible if its representation \(G(\mathbb{A})\) is a reducible matrix.

Let \(A=(a_{ij})\) be a nonnegative square matrix of order n. The associated digraph \(D(A)=(V,E)\) of A (possibly with loops) is defined to be the digraph with vertex set \(V=\{1,2,\ldots,n\}\) and arc set \(E=\{(i,j)\mid a_{ij}>0\}\).

Now we give a characterization of a strongly connected k-uniform directed hypergraph.

Theorem 4.3

Let\(\overrightarrow{\mathcal{H}}\)be ak-uniform directed hypergraph, \(\mathbb{A}=\mathbb{A}(\overrightarrow{\mathcal {H}})=(a_{i_{1}i_{2}\cdots i_{k}})\)be the adjacency tensor of\(\overrightarrow{\mathcal{H}}\), \(G(\mathbb{A})\)be the representation associated matrix of\(\mathbb{A}\), and\(D(G(\mathbb{A}))\)be the associated directed graph of\(G(\mathbb{A})\). Then the following four conditions are equivalent:

  1. (i)

    \(\mathbb{A}\)is weakly irreducible.

  2. (ii)

    \(G(\mathbb{A})\)is irreducible.

  3. (iii)

    \(D(G(\mathbb{A}))\)is strongly connected.

  4. (iv)

    \(\overrightarrow{\mathcal{H}}\)is strongly connected.

Proof

By Proposition 15 in [27] and \(\mathbb{A}=\mathbb {A}(\overrightarrow{\mathcal{H}})\) is a nonnegative tensor, we have (i) ⇔ (ii) ⇔ (iii). Now we show (iii) ⇔ (iv).

(iii) ⇒ (iv): Let \(D(G(\mathbb{A}))\) is strongly connected, now we show \(\overrightarrow{\mathcal{H}}\) is strongly connected.

For any \(i,j\in V(\overrightarrow{\mathcal{H}})=V(D(G(\mathbb{A})))\), there exists a directed path P from i to j in \(D(G(\mathbb{A}))\) by \(D(G(\mathbb{A}))\) being strongly connected. We assume \(P=ij_{1}j_{2}\cdots j_{t}j\), then \((i,j_{1}),(j_{1},j_{2}),\ldots , (j_{t},j)\in E(D(G(\mathbb{A})))\), which implies \(\sum_{j_{1}\in\{i_{2},\ldots, i_{k}\}} a_{ii_{2}\cdots i_{k}}>0\), \(\sum_{j_{2}\in\{i_{2},\ldots, i_{k}\}} a_{j_{1}i_{2}\cdots i_{k}}>0\), …, \(\sum_{j_{t}\in\{i_{2},\ldots, i_{k}\}} a_{j_{t-1}i_{2}\cdots i_{k}}>0\), and \(\sum_{j\in\{i_{2},\ldots, i_{k}\}} a_{j_{t}i_{2}\cdots i_{k}}>0\), thus there exists a sequence of arcs (\(e_{1},e_{2},\ldots,e_{t},e_{t+1}\)), where \(e_{l} \in\overrightarrow{\mathcal{H}}\) and \(l\in[t+1]\), such that i is the tail of \(e_{1}\), \(j_{1}\) is a head of \(e_{1}\), \(j_{l}\) is the tail of \(e_{l+1}\), \(j_{l+1}\) is a head of \(e_{l+1}\) for \(1\leq l\leq t-1\), \(j_{t}\) is the tail of \(e_{t+1}\), j is a head of \(e_{t+1}\), say, \(i\rightarrow j\) in \({\mathcal{H}}\). Therefore \(\overrightarrow{\mathcal {H}}\) is strongly connected.

(iv) ⇒ (iii): Let \(\overrightarrow{\mathcal{H}}\) be strongly connected. Now we show that \(D(G(\mathbb{A}))\) is strongly connected.

For any \(i,j\in V(D(G(\mathbb{A})))=V(\overrightarrow{\mathcal{H}})\), \(i\rightarrow j\) in \(\overrightarrow{\mathcal{H}}\) by \(\overrightarrow {\mathcal{H}}\) being strongly connected, say, there exists a sequence of arcs (\(e_{1},e_{2},\ldots,e_{t},e_{t+1}\)), where \(e_{l} \in\overrightarrow {\mathcal{H}}\) for \(l\in[t+1]\), such that i is the tail of \(e_{1}\), j is a head of \(e_{t+1}\), and a head of \(e_{r}\) is the tail of \(e_{r+1}\) for all \(r\in[t]\). We assume that \(j_{r}\) is the tail of \(e_{r+1}\) and a head of \(e_{r}\) for all \(r\in[t]\), then \(\sum_{j_{1}\in\{i_{2},\ldots, i_{k}\}} a_{ii_{2}\cdots i_{k}}>0\), \(\sum_{j_{r+1}\in\{i_{2}, \ldots, i_{k}\}} a_{j_{r}i_{2}\cdots i_{k}}>0\) for \(1\leq r\leq t-1\), and \(\sum_{j\in\{i_{2},\ldots, i_{k}\}} a_{j_{t}i_{2}\cdots i_{k}}>0\). Thus \((i,j_{1})\in E(D(G(\mathbb{A})))\), \((j_{r},j_{r+1})\in E(D(G(\mathbb {A})))\) for \(1\leq r\leq t-1\) and \((j_{t},j)\in E(D(G(\mathbb{A})))\), which implies that there exists a walk \(ij_{1}j_{2}\cdots j_{t}j\) in \(D(G(\mathbb{A}))\). Therefore \(D(G(\mathbb{A}))\) is strongly connected. □

Recently, several papers studied the spectral radii of the adjacency tensor \(\mathbb{A}(\overrightarrow{\mathcal{H}})\) and the signless Laplacian tensor \(\mathbb{Q}(\overrightarrow{\mathcal {H}})\) of a k-uniform directed hypergraph \(\overrightarrow{\mathcal{H}}\) (see [5, 24] and so on).

Let \(\overrightarrow{\mathcal{H}}\) be a k-uniform directed hypergraph. If \(\overrightarrow{\mathcal{H}}\) is strongly connected, then by Theorem 4.3 and the above definitions, \(\mathbb{A}(\overrightarrow{\mathcal{H}})\) and thus \(\mathbb {Q}(\overrightarrow{\mathcal{H}})\) are weakly irreducible. Thus we can apply Theorem 2.1 to the adjacency tensor \(\mathbb {A}(\overrightarrow{\mathcal{H}})\) and the signless Laplacian tensor \(\mathbb{Q}(\overrightarrow{\mathcal{H}})\) of a (strongly connected) k-uniform directed hypergraph \(\overrightarrow{\mathcal{H}}\). If \(k= 2\), we obtain Theorem 2.7 in [11]. If \(k\geq3\), we obtain some new results about the bounds of \(\rho (\mathbb{A}(\overrightarrow{\mathcal{H}}))\) and \(\rho(\mathbb {Q}(\overrightarrow{\mathcal{H}}))\) as follows.

Theorem 4.4

Let\(k\geq3\), \(\overrightarrow{\mathcal{H}}\)be ak-uniform directed hypergraph with out-degree sequence\(d_{1}^{+}\geq\cdots\geq d_{n}^{+}\), \(\mathbb{ A}(\overrightarrow{\mathcal{H}})\)be the adjacency tensor of\(\overrightarrow{\mathcal{H}}\). Let\(A_{1}=\frac{1}{k-1}\binom {n-2}{k-2}\), \(\phi_{1}=d_{1}^{+}\), and

$$ \phi_{s}=\frac{1}{2} \Biggl\{ d_{s}^{+}-A_{1}+ \sqrt { \bigl(d_{s}^{+}+A_{1} \bigr)^{2}+4A_{1} \sum_{t=1}^{s-1} \bigl(d_{t}^{+}-d_{s}^{+} \bigr)} \Biggr\} $$
(4.1)

for\(2\leq s\leq n\). Then

$$\begin{aligned} \rho \bigl(\mathbb{A}(\overrightarrow{\mathcal{H}}) \bigr)&\leq \min_{1\leq s\leq n}\phi_{s}. \end{aligned}$$
(4.2)

Moreover, if\(\overrightarrow{\mathcal{H}}\)is a strongly connectedk-uniform directed hypergraph, then the equality in (4.2) holds if and only if\(d_{1}^{+}=d_{2}^{+}=\cdots=d_{n}^{+}\).

Proof

Let \(\mathbb{A}=\mathbb{A}(\overrightarrow{\mathcal{H}})\). We apply Theorem 2.1 to \(\mathbb{A}(\overrightarrow{\mathcal{H}})\), then we have \(M=0\), \(N=\frac{1}{(k-1)!}\), \(r_{i}=d^{+}_{i}\) for \(1\leq i\leq n\), \(A_{1}=N_{1}\), and (4.1) is from (2.1). Thus (4.2) holds by Theorem 2.1, and the equality in (4.2) holds if and only if \(d_{1}^{+}=d_{2}^{+}=\cdots=d_{n}^{+}\) by Theorem 2.1 and Theorem 4.3. □

Theorem 4.5

Let\(k\geq3\), \(\overrightarrow{\mathcal{H}}\)be ak-uniform directed hypergraph with out-degree sequence\(d_{1}^{+}\geq\cdots\geq d_{n}^{+}\), \(\mathbb{Q}(\overrightarrow{\mathcal{H}})\)be the signless Laplacian tensor of\(\overrightarrow{\mathcal{H}}\). Let\(A_{1}=\frac {1}{k-1}\binom{n-2}{k-2}\), \(\psi_{1}=2d_{1}^{+}\), and

$$ \psi_{s}=\frac{1}{2} \Biggl\{ 2d_{s}^{+}+d_{1}^{+}-A_{1}+ \sqrt { \bigl(2d_{s}^{+}-d_{1}^{+}+A_{1} \bigr)^{2}+8A_{1}\sum_{t=1}^{s-1} \bigl(d_{t}^{+}-d_{s}^{+} \bigr)} \Biggr\} $$
(4.3)

for\(2\leq s\leq n\). Then

$$ \rho \bigl(\mathbb{Q}(\overrightarrow{\mathcal{H}}) \bigr)\leq \min_{1\leq s\leq n}\psi_{s}. $$
(4.4)

Moreover, if\(\overrightarrow{\mathcal{H}}\)is a strongly connectedk-uniform directed hypergraph, then the equality in (4.4) holds if and only if\(d_{1}^{+}=d_{2}^{+}=\cdots=d_{n}^{+}\).

Proof

Let \(\mathbb{A}=\mathbb{Q}(\overrightarrow{\mathcal{H}})\). We apply Theorem 2.1 to \(\mathbb{Q}(\overrightarrow{\mathcal{H}})\), then we have \(M=d_{1}^{+}\), \(N=\frac{1}{(k-1)!}\), \(r_{i}=2d_{i}^{+}\) for \(1\leq i\leq n\), \(A_{1}=N_{1}\), and (4.3) is from (2.1). Thus (4.4) holds by Theorem 2.1, and the equality in (4.4) holds if and only if \(d_{1}^{+}=d_{2}^{+}=\cdots=d_{n}^{+}\) by Theorem 2.1 and Theorem 4.3. □