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Abstract
In this paper, we obtain a sharp upper bound on the spectral radius of a nonnegative
k-uniform tensor and characterize when this bound is achieved. Furthermore, this
result deduces the main result in [X. Duan and B. Zhou, Sharp bounds on the spectral
radius of a nonnegative matrix, Linear Algebra Appl. 439:2961–2970, 2013] for
nonnegative matrices; improves the adjacency spectral radius and signless Laplacian
spectral radius of a uniform hypergraph for some known results in [D.M. Chen,
Z.B. Chen and X.D. Zhang, Spectral radius of uniform hypergraphs and degree
sequences, Front. Math. China 6:1279–1288, 2017]; and presents some new sharp
upper bounds for the adjacency spectral radius and signless Laplacian spectral radius
of a uniform directed hypergraph. Moreover, a characterization of a strongly
connected k-uniform directed hypergraph is obtained.
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1 Introduction
Let k, n be two positive integers. As in [17, 21], an order k dimension n tensor A = (ai1···ik )
over the real field R is a multidimensional array with nk entries ai1···ik ∈ R, where ij ∈
[n] = {1, 2, . . . , n}, j ∈ [k] = {1, 2, . . . , k}. Obviously, a vector is an order 1 tensor and a square
matrix is an order 2 tensor.

Furthermore, we call a tensor A nonnegative (positive), denoted by A ≥ 0 (A > 0), if
every entry has ai1···ik ≥ 0 (ai1···ik > 0). The tensor A = (ai1···ik ) is called symmetric if ai1···ik =
aσ (i1)···σ (ik ), where σ is any permutation of the indices.

Let A be an order k dimension n tensor. If there is a complex number λ and a nonzero
complex vector x = (x1, x2, . . . , xn)T such that

Axk–1 = λx[k–1],
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then λ is called an eigenvalue of A and x an eigenvector of A corresponding to the eigen-
value λ [17, 18, 21]. Here Axk–1 and x[k–1] are vectors, whose ith entries are

(
Axk–1)

i =
n∑

i2,...,ik =1

aii2···ik xi2 · · ·xik

and (x[k–1])i = xk–1
i , respectively. Moreover, the spectral radius ρ(A) of a tensor A is defined

as

ρ(A) = max
{|λ| : λ is an eigenvalue of A

}
.

Some properties of the spectral radius of a nonnegative tensor can be found in [3, 9, 14, 16–
18, 21, 25–27].

Definition 1.1 ([22]) Let A and B be two tensors with order m ≥ 2 and k ≥ 1 dimension
n, respectively. The general product AB of A and B is the following tensor C with order
(m – 1)(k – 1) + 1 and dimension n:

ciα1···αm–1 =
n∑

i2,...,im=1

aii2···im bi2α1 · · ·bimαm–1

(
i ∈ [n],α1, . . . ,αm–1 ∈ [n]k–1).

Definition 1.2 ([22]) Let A = (ai1i2···ik ) and B = (bi1i2···ik ) be two order k dimension n ten-
sors. We say that A and B are diagonal similar if there exists some invertible diagonal
matrix D = (d11, d22, . . . , dnn) of order n such that B = D–(k–1)

AD with entries

bi1i2···ik = d–(k–1)
i1i1 ai1i2···ik di2i2 · · ·dik ik .

Theorem 1.3 ([22]) If the two order k dimension n tensors A and B are diagonal similar,
then they have the same eigenvalues including multiplicity and same spectral radius.

Definition 1.4 ([9, 26]) Let A be an order k dimensional n tensor (not necessarily non-
negative). If there exists a nonempty proper subset I of the set [n], such that

ai1i2...ik = 0 for all i1 ∈ I and some ij /∈ I where j ∈ {2, . . . , k},

then A is called weakly reducible (or sometimes I-weakly reducible). If A is not weakly
reducible, then A is called weakly irreducible.

The ith slice of a tensor A with order k ≥ 2 and dimension n, denoted by Ai in [23], is
the subtensor of A with order k – 1 and dimension n such that (Ai)i2···ik = aii2···ik . Then the
ith slice sum (also called “the ith row sum”) of A is defined as

ri(A) =
n∑

i2,...,ik =1

aii2···ik
(
i ∈ [n]

)
.
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Lemma 1.5 ([13, 25]) Let A be a nonnegative tensor with order k ≥ 2 and dimension n.
Then we have

min
1≤i≤n

ri(A) ≤ ρ(A) ≤ max
1≤i≤n

ri(A). (1.1)

Moreover, if A is weakly irreducible, then one of the equalities in (1.1) holds if and only if
r1(A) = r2(A) = · · · = rn(A).

We denote by
(n

r
)

the number of r-combinations of an n-element set, and let
(n

r
)

= 0 if
r > n or r < 0. Clearly,

(n
r
)

= n!
r!(n–r)! when 0 ≤ r ≤ n.

Lemma 1.6 ([2]) Let n, k, and m be positive integers. Then
(1)

∑k
r=0

(n
r
)( m

k–r
)

=
(n+m

k
)

(n + m ≥ k);
(2)

(n
k
)

= n
k
(n–1

k–1
)

(n ≥ k ≥ 1).

Let S = {s1, s2, . . . , sn} be an n-element set, noting that si �= sj if i �= j.

Definition 1.7 Let n ≥ 2, k ≥ 2,A be an order k dimension n tensor, we callA a k-uniform
tensor if its entries are defined as follows: ai1i2···ik ∈ R if {i1, i2, . . . , ik} is a k-element set or
i1 = i2 = · · · = ik , otherwise, ai1i2···ik = 0.

Obviously, a 2-uniform tensor is an ordinary matrix. Let A be a k-uniform tensor with
order k dimension n. Then ai1i2···ik �= 0 implies {i1, i2, . . . , ik} is a k-element set or i1 = i2 =
· · · = ik .

In this paper, we obtain a sharp upper bound on the spectral radius of a nonnegative k-
uniform tensor in Sect. 2. By applying the bound to a nonnegative matrix, we can obtain
the main result in [7]. In Sect. 3, we apply the bound to the adjacency spectral radius
and signless Laplacian spectral radius of a uniform hypergraph and improve some known
results in [4]. Furthermore, we give a characterization of a strongly connected k-uniform
directed hypergraph and obtain some new results by applying the bound to the adjacency
spectral radius and the signless Laplacian spectral radius of a uniform directed hypergraph
in Sect. 4.

2 Main results
In this section, we obtain a sharp upper bound on the spectral radius of a nonnegative
k-uniform tensor and characterize when this bound is achieved. Furthermore, this bound
deduces the main result in [7] for a nonnegative matrix.

Theorem 2.1 Let n ≥ 2, k ≥ 2, A = (ai1i2···ik ) be a nonnegative k-uniform tensor with order
k dimension n, ri = ri(A) =

∑n
i2,...,ik =1 aii2···ik for i ∈ [n] with r1 ≥ r2 ≥ · · · ≥ rn. Let M be

the largest diagonal element and N (> 0) be the largest non-diagonal element of tensor A,
N1 = N(k – 2)!

(n–2
k–2

)
, φ1 = r1, and

φs =
1
2

{

rs + M – N1 +

√√
√√(rs – M + N1)2 + 4N1

s–1∑

t=1

(rt – rs)

}

(2.1)
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for 2 ≤ s ≤ n. Then

ρ(A) ≤ min
1≤s≤n

φs.

Let φs = min1≤l≤n φl . If A is weakly irreducible, then
(1) when k = 2, ρ(A) = φs if and only if r1 = r2 = · · · = rn or for some t (2 ≤ t ≤ s),

A satisfies the following conditions:
(i) aii = M for 1 ≤ i ≤ t – 1;

(ii) aii2 = N for 1 ≤ i ≤ n, 1 ≤ i2 ≤ t – 1, and i �= i2;
(iii) rt = rt+1 = · · · = rn;

(2) when k ≥ 3, ρ(A) = φs if and only if r1 = r2 = · · · = rn.

Proof Firstly, we show ρ(A) ≤ φs for 1 ≤ s ≤ n.
If s = 1, then by Lemma 1.5 we have ρ(A) ≤ r1 = φ1. Now we only consider the cases of

2 ≤ s ≤ n.
Let

U = diag(x1, . . . , xs–1, xs, . . . , xn),

where xi > 0 for 1 ≤ i ≤ n, xk–1
i = 1 + ri–rs

φs+N1–M for 1 ≤ i ≤ s – 1, and xs = · · · = xn = 1.
Now we show xi ≥ 1 for 1 ≤ i ≤ s – 1. By r1 ≥ r2 ≥ · · · ≥ rn, we only need to show φs +

N1 – M > 0.
If

∑s–1
t=1(rt – rs) > 0, then by (2.1) we have

φs >
1
2
(
rs + M – N1 + |rs – M + N1|

) ≥ 1
2
(
rs + M – N1 – (rs – M + N1)

)
= M – N1,

and thus φs – M + N1 > 0.
If

∑s–1
t=1(rt – rs) = 0, then r1 = r2 = · · · = rs. Thus φs – M + N1 > 0 by r1 ≥ M and φs = rs

from (2.1).
Combining the above arguments, we know xi ≥ 1, and then U is an invertible diagonal

matrix. Let B = U–(k–1)
AU = (bi1···ik ). By Theorem 1.3, we have

ρ(A) = ρ(B). (2.2)

By (2.1), it is easy to see that

φ2
s – (rs + M – N1)φs + (M – N1)rs – N1

s–1∑

t=1

(rt – rs) = 0.

Then

(φs – M + N1)(φs – rs) = N1

s–1∑

t=1

(rt – rs) = N1

s–1∑

t=1

(φs – M + N1)
(
xk–1

t – 1
)

= N1(φs – M + N1)

( s–1∑

t=1

xk–1
t – (s – 1)

)

.
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Therefore, φs = rs + N1
∑s–1

t=1 xk–1
t – N1(s – 1) and thus

s–1∑

t=1

xk–1
t =

φs – rs + (s – 1)N1

N1
. (2.3)

In the following we show ri(B) ≤ φs for any i ∈ [n] = {1, 2, . . . , n}.
Let S(A) = {{i, i2, . . . , ik}|aii2···ik �= 0}. Since M is the largest diagonal element and N > 0 is

the largest non-diagonal element of tensor A, by Definition 1.2, we have

ri(B) = ri
(
U–(k–1)

AU
)

=
n∑

i2,...,ik =1

(
U–(k–1))

iiaii2···ik Ui2i2 · · ·Uik ik

=
1

xk–1
i

n∑

i2,...,ik =1

aii2···ik xi2 · · ·xik

=
1

xk–1
i

{

ri +
n∑

i2,...,ik =1

aii2···ik (xi2 · · ·xik – 1)

}

=
1

xk–1
i

{

ri + ai···i
(
xk–1

i – 1
)

+
n∑

i2,...,ik =1

aii2···ik (xi2 · · ·xik – 1) – ai···i
(
xk–1

i – 1
)
}

≤ 1
xk–1

i

{

ri + M
(
xk–1

i – 1
)

+
n∑

i2,...,ik =1

aii2···ik (xi2 · · ·xik – 1) – ai···i
(
xk–1

i – 1
)
}

≤ 1
xk–1

i

{
ri + M

(
xk–1

i – 1
)

+ N(k – 1)!
∑

{i,i2,...,ik}∈S(A)

(xi2 · · ·xik – 1)
}

≤ 1
xk–1

i

{
ri + M

(
xk–1

i – 1
)

+ N(k – 1)!
∑

{i,i2,...,ik}∈S(A)

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)}

≤ 1
xk–1

i

{

ri + M
(
xk–1

i – 1
)

+ N(k – 1)!
k–1∑

r=0

∑

{i2,...,ik}∈Ns
r

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)}

=
1

xk–1
i

{

ri + M
(
xk–1

i – 1
)

+ N(k – 1)!
k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)}

,
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where Ns
r = {{i2, . . . , ik} | i2, . . . , ik ∈ {1, 2, . . . , n} \ {i}, and there are exactly r elements in

{i2, . . . , ik} such that they are not less than s} for 0 ≤ r ≤ k – 1. Obviously, the family of all
(k – 1)-element subsets of {1, 2, . . . , n} \ {i} is just equal to

⋃k–1
r=0 Ns

r . Thus we have

ri(B) ≤ M +
1

xk–1
i

{

ri – M + N(k – 1)!
k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)}

, (2.4)

and the equality holds in (2.4) if and only if (a), (b), (c), and (d) hold:
(a) xk–1

i = 1 or ai···i = M for xi > 1;
(b) for any {i, i2, . . . , ik} ∈ S(A), xi2 · · ·xik = 1 or aii2···ik = N for xi2 · · ·xik > 1;
(c) xi2 = · · · = xik for any {i, i2, . . . , ik} ∈ S(A);

(d)
∑

{i,i2,...,ik}∈S(A)(
xk–1

i2
+···+xk–1

ik
k–1 – 1) =

∑k–1
r=0

∑
{i2,...,ik}∈Ns

r
(

xk–1
i2

+···+xk–1
ik

k–1 – 1).
Case 1: s ≤ i ≤ n.
Clearly, {i2, . . . , ik} ∈ Ns

r implies that we should choose r elements from the set {s, . . . , n} \
{i} and choose k – 1 – r elements from the set {1, 2, . . . , s – 1}, then we have

k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

1 =
k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s

r

)
. (2.5)

Similarly, we have

k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

(
xk–1

i2 + · · · + xk–1
ik

)

=
k–2∑

r=0

(
s – 2

k – 2 – r

)(
n – s

r

)( s–1∑

t=1

xk–1
t

)

+
k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s – 1

r – 1

)( n∑

t=s
xk–1

t – xk–1
i

)

. (2.6)

We note xs = · · · = xn = 1 and r1 ≥ · · · ≥ rs ≥ · · · ≥ ri ≥ · · · ≥ rn, then by (2.3), (2.4), (2.5),
and (2.6), we have

ri(B) ≤ ri + N(k – 1)!
k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)

≤ rs + N(k – 2)!
k–2∑

r=0

(
s – 2

k – 2 – r

)(
n – s

r

)( s–1∑

t=1

xk–1
t

)

+ N(k – 2)!
k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s – 1

r – 1

)( n∑

t=s
xk–1

t – xk–1
i

)

– N(k – 1)!
k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s

r

)

= rs + N(k – 2)!
(

n – 2
k – 2

) s–1∑

t=1

xk–1
t + N(k – 2)!

k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s – 1

r – 1

)
(n – s)
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– N(k – 1)!
k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s

r

)

= rs + N1

s–1∑

t=1

xk–1
t

+ N(k – 2)!
k–2∑

r=0

(
s – 1

k – 1 – r

)[(
n – s – 1

r – 1

)
(n – s) – (k – 1)

(
n – s

r

)]

= rs + N1

s–1∑

t=1

xk–1
t – N(k – 2)!

k–2∑

r=0

(
s – 1

k – 1 – r

)(
n – s

r

)
(k – 1 – r)

= rs + N1

s–1∑

t=1

xk–1
t – N(k – 2)!

k–2∑

r=0

(s – 1)
(

s – 2
k – 2 – r

)(
n – s

r

)

= rs + N1

s–1∑

t=1

xk–1
t – N(k – 2)!(s – 1)

(
n – 2
k – 2

)

= rs + N1

s–1∑

t=1

xk–1
t – (s – 1)N1

= φs,

where equality holds if and only if the following condition (e) holds: (e) ri = rs.
Case 2: 1 ≤ i ≤ s – 1.
Subcase 2.1: s ≥ 3.
Clearly, {i2, . . . , ik} ∈ Ns

r implies that we should choose r elements from the set {s, . . . , n}
and choose k – 1 – r elements from the set {1, 2, . . . , s – 1} \ {i}, then

∑k–2
r=0

∑
{i2,...,ik}∈Ns

r
1 =

∑k–2
r=0

( s–2
k–1–r

)(n–s+1
r

)
. Similarly, we have

k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

(
xk–1

i2 + · · · + xk–1
ik

)

=
k–2∑

r=0

(
s – 3

k – r – 2

)(
n – s + 1

r

)( s–1∑

t=1

xk–1
t – xk–1

i

)

+
k–2∑

r=0

(
s – 2

k – 1 – r

)(
n – s
r – 1

)( n∑

t=s
xk–1

t

)

=
(

n – 2
k – 2

)( s–1∑

t=1

xk–1
t – xk–1

i

)

+
k–2∑

r=0

(
s – 2

k – 1 – r

)(
n – s
r – 1

)
(n – s + 1).

Then

N(k – 1)!
k–2∑

r=0

∑

{i2,...,ik}∈Ns
r

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)

= N1

( s–1∑

t=1

xk–1
t – xk–1

i

)

+ N(k – 2)!
k–2∑

r=0

(
s – 2

k – 1 – r

)(
n – s
r – 1

)
(n – s + 1)
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– N(k – 1)!
k–2∑

r=0

(
s – 2

k – 1 – r

)(
n – s + 1

r

)

= N1

( s–1∑

t=1

xk–1
t – xk–1

i

)

– N(k – 2)!
k–2∑

r=0

(k – 1 – r)
(

s – 2
k – 1 – r

)(
n – s + 1

r

)

= N1

( s–1∑

t=1

xk–1
t – xk–1

i

)

– N(k – 2)!
k–2∑

r=0

(s – 2)
(

s – 3
k – r – 2

)(
n – s + 1

r

)

= N1

( s–1∑

t=1

xk–1
t – xk–1

i

)

– N(k – 2)!(s – 2)
(

n – 2
k – 2

)

= N1

( s–1∑

t=1

xk–1
t – xk–1

i

)

– (s – 2)N1.

Thus, by (2.3), (2.4), and the definition of xk–1
i for 1 ≤ i ≤ s – 1, we have

ri(B) ≤ M +
1

xk–1
i

{

ri – M + N1

( s–1∑

t=1

xk–1
t – xk–1

i

)

– (s – 2)N1

}

= M – N1 +
1

xk–1
i

{

ri – M + N1

s–1∑

t=1

xk–1
t – (s – 2)N1

}

= φs.

Subcase 2.2: s = 2.
In this case, we need to show r1(B) ≤ φ2. Noting that x2 = · · · = xn = 1, by (2.4) and the

definition of N2
r , we have

r1(B) ≤ M +
1

xk–1
1

{

r1 – M + N(k – 1)!
k–2∑

r=0

∑

{i2,...,ik}∈N2
r

(xk–1
i2 + · · · + xk–1

ik
k – 1

– 1
)}

= M +
1

xk–1
1

(r1 – M).

By (2.3), we have xk–1
1 = φ2–r2+N1

N1
. Then, by (2.1) and the definition of φ2, we have

1
xk–1

1
(r1 – M)

=
N1(r1 – M)
φ2 – r2 + N1

=
2N1(r1 – M)

N1 + M – r2 +
√

(N1 – M + r2)2 + 4N1(r1 – r2)

=
2N1(r1 – M)(N1 + M – r2 –

√
(N1 – M + r2)2 + 4N1(r1 – r2))

(N1 + M – r2)2 – ((N1 – M + r2)2 + 4N1(r1 – r2))

= –
N1 + M – r2 –

√
(N1 – M + r2)2 + 4N1(r1 – r2)

2
.
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Thus

r1(B) ≤ M +
1

xk–1
1

(r1 – M) = φ2.

Combining Subcases 2.1 and 2.2, we have ri(B) ≤ φs for 1 ≤ i ≤ s – 1, and combining
Cases 1 and 2, we have ri(B) ≤ φs for 1 ≤ i ≤ n. Then ρ(A) = ρ(B) ≤ max1≤i≤n ri(B) ≤ φs

for 2 ≤ s ≤ n by (2.2) and Lemma 1.5.
Therefore, we know ρ(A) ≤ φs for 1 ≤ s ≤ n and thus ρ(A) ≤ min1≤s≤n φs.
Now suppose that A is weakly irreducible. Then B is also weakly irreducible by B =

U–(k–1)
AU . Let φs = min1≤l≤n φl .

Case 1: s = 1.
By Lemma 1.5 and the fact r1 = max1≤i≤n ri, we have ρ(A) = φ1 if and only if r1 = r2 =

· · · = rn.
Case 2: 2 ≤ s ≤ n.
Then ρ(B) = max1≤i≤n ri(B) and thus r1(B) = r2(B) = · · · = rn(B) = φs by φs = ρ(A) =

ρ(B) ≤ max1≤i≤n ri(B) ≤ φs and Lemma 1.5. Therefore, (a), (b), (c), and (d) hold for any
i ∈ [n], (e) holds for any i ∈ {s, . . . , n}.

Subcase 2.1: r1 = rs.
By r1 ≥ r2 ≥ · · · ≥ rn and (e) ri = rs for s ≤ i ≤ n, then we have r1 = r2 = · · · = rn.
Subcase 2.2: r1 > rs.
Let t be the smallest integer such that rt = rs for 1 < t ≤ s. Since rs = rs+1 = · · · = rn, we

have rt = rt+1 = · · · = rn and xi > 1 for i = 1, 2, . . . , t – 1.
When k ≥ 3, (c) and (d) cannot hold at the same time. Because there are r elements in

{i2, . . . , ik} chosen from {s, . . . , n} and k – 1 – r elements in {i2, . . . , ik} chosen from {1, . . . ,
s – 1}, and then xi2 = · · · = xik cannot hold when 1 ≤ r ≤ k – 2. Thus we only consider the
case of k = 2.

In the case of k = 2, (d) implies

∑

{i,i2}∈S(A)

(xi2 – 1) =
1∑

r=0

∑

{i2}∈Ns
r

(xi2 – 1) =
t–1∑

i2=1
i2 �=i

(xi2 – 1).

Then (i)–(iii) follow from (a), (b), (c), (d) for 1 ≤ i ≤ n, and (e) for s ≤ i ≤ n, and thus (1)
and (2) hold.

Conversely, if r1 = r2 = · · · = rn, then by Lemma 1.5, ρ(A) = φ1 = r1. If k = 2 and (i)–(iii)
hold, then (a), (b), (c), and (d) hold for 1 ≤ i ≤ n, (e) holds for s ≤ i ≤ n. Then we have
ri(B) = φs for 1 ≤ i ≤ n. Therefore, by Lemma 1.5, we have ρ(A) = ρ(B) = max1≤i≤n ri(B) =
φs for s = 2, . . . , n. �

Let k = 2. ThenA is a matrix, weak irreducibility for tensors corresponds to irreducibility
for matrices, and slice sum for tensors corresponds to row sum for matrices. The following
result follows immediately.

Corollary 2.2 ([7], Theorem 2.1) Let A be an n × n nonnegative matrix with row sums
r1, r2, . . . , rn, where r1 ≥ r2 ≥ · · · ≥ rn. Let M be the largest diagonal element and N be the
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largest non-diagonal element of A. Suppose that N > 0. Let φ1 = r1 and, for 2 ≤ s ≤ n,

φs =
1
2

(

rs + M – N +

√√
√√(rs – M + N)2 + 4N

s–1∑

t=1

(rt – rs)

)

. (2.7)

Then ρ(A) ≤ min1≤s≤n φs.
Let φs = min1≤l≤n φl . If A is irreducible, then ρ(A) = φs if and only if r1 = r2 = · · · = rn or

for some t (2 ≤ t ≤ s), A satisfies the following conditions:
(i) aii = M for 1 ≤ i ≤ t – 1;

(ii) aii2 = N for 1 ≤ i ≤ s – 1 and 1 ≤ i2 ≤ t – 1 with i �= i2;
(iii) rt = · · · = rn;
(iv) aii2 = N for s ≤ i ≤ n and 1 ≤ i2 ≤ t – 1.

3 Applications to a k-uniform hypergraph
A hypergraph is a natural generalization of an ordinary graph [1].

A hypergraph H = (V (H), E(H)) on n vertices is a set of vertices, say, V (H) = {1, 2, . . . , n}
and a set of edges, say, E(H) = {e1, e2, . . . , em}, where ei = {i1, i2, . . . , il}, ij ∈ [n], j = 1, 2, . . . , l.
Let k ≥ 2, if | ei |= k for any i = 1, 2, . . . , m, then H is called a k-uniform hypergraph. When
k = 2, then H is an ordinary graph. The degree di of vertex i is defined as di = |{ej : i ∈ ej ∈
E(H)}|. If di = d for any vertex i of a hypergraph H, then H is called d-regular. A walk W
of length � in H is a sequence of alternate vertices and edges: v0, e1, v1, e2, . . . , e�, v�, where
{vi, vi+1} ⊆ ei+1 for i = 0, 1, . . . ,� – 1. The hypergraph H is said to be connected if every two
vertices are connected by a walk.

Definition 3.1 ([6, 18]) Let H = (V (H), E(H)) be a k-uniform hypergraph on n vertices.
The adjacency tensor of H is defined as the order k dimension n tensor A(H), whose
(i1i2 · · · ik)-entry is

(
A(H)

)
i1i2···ik =

⎧
⎨

⎩

1
(k–1)! , if {i1, i2, . . . , ik} ∈ E(H),

0, otherwise.

Let D(H) be an order k dimension n diagonal tensor with its diagonal entry Dii···i being
di, the degree of vertex i for all i ∈ V (H) = [n]. Then Q(H) = D(H) + A(H) is called the
signless Laplacian tensor of the hypergraph H. Clearly, the adjacency tensor and the sign-
less Laplacian tensor of a k-uniform hypergraph H are nonnegative symmetric k-uniform
tensors and, for any 1 ≤ i ≤ n,

ri
(
A(H)

)
=

n∑

i2,...,ik =1

(
A(H)

)
ii2···ik = di, ri

(
Q(H)

)
=

n∑

i2,...,ik =1

(
Q(H)

)
ii2···ik = 2di.

It was proved in [9, 20] that a k-uniform hypergraph H is connected if and only if its
adjacency tensorA(H) (and thus the signless Laplacian tensorQ(H)) is weakly irreducible.

Recently, several papers studied the spectral radii of the adjacency tensor A(H) and the
signless Laplacian tensor Q(H) of a k-uniform hypergraph H (see [4, 6, 18, 19, 27, 28] and
so on). In this section, we apply Theorem 2.1 to the adjacency tensor A(H) and the signless
Laplacian tensor Q(H) of a k-uniform hypergraph H. If k = 2, we obtain Theorem 3.1 and
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Theorem 4.2 in [7]. If k ≥ 3, we improve some known results about the bounds of ρ(A(H))
and ρ(Q(H)) in [4].

Theorem 3.2 Let k ≥ 3, H be a k-uniform hypergraph with degree sequence d1 ≥ · · · ≥ dn,
A(H) be the adjacency tensor of H. Let A1 = 1

k–1
(n–2

k–2
)
, φ1 = d1, and

φs =
1
2

{

ds – A1 +

√√
√√(ds + A1)2 + 4A1

s–1∑

t=1

(dt – ds)

}

(3.1)

for 2 ≤ s ≤ n. Then

ρ
(
A(H)

) ≤ min
1≤s≤n

φs. (3.2)

If H is connected, then the equality in (3.2) holds if and only if H is regular.

Proof Let A = A(H). We apply Theorem 2.1 to A(H), then we have M = 0, N = 1
(k–1)! , ri = di

for 1 ≤ i ≤ n, A1 = N1, and (3.1) is from (2.1). Thus (3.2) holds by Theorem 2.1.
IfH is connected, then by Theorem 2.1 the equality in (3.2) holds if and only if r1(A(H)) =

r2(A(H)) = · · · = rn(A(H)), which says exactly that H is regular, since ri(A(H)) = di for any
1 ≤ i ≤ n. �

Theorem 3.3 Let k ≥ 3, H be a k-uniform hypergraph with degree sequence d1 ≥ · · · ≥ dn,
Q(H) be the signless Laplacian tensor of H. Let A1 = 1

k–1
(n–2

k–2
)
, ψ1 = 2d1, and

ψs =
1
2

{

2ds + d1 – A1 +

√√
√√(2ds – d1 + A1)2 + 8A1

s–1∑

t=1

(dt – ds)

}

(3.3)

for 2 ≤ s ≤ n. Then

ρ
(
Q(H)

) ≤ min
1≤s≤n

ψs. (3.4)

If H is connected, then the equality in (3.4) holds if and only if H is regular.

Proof Let A = Q(H). We apply Theorem 2.1 to Q(H), then we have M = d1, N = 1
(k–1)! ,

ri = 2di for 1 ≤ i ≤ n, A1 = N1, and (3.3) is from (2.1). Thus (3.4) holds by Theorem 2.1.
If H is connected, then by Theorem 2.1 the equality in (3.4) holds if and only if

r1(Q(H)) = r2(Q(H)) = · · · = rn(Q(H)), which says exactly that H is regular, since
ri(Q(H)) = 2di for any 1 ≤ i ≤ n. �

4 Applications to k-uniform directed hypergraph
Directed hypergraphs have found applications in imaging processing [8], optical network
communications [15], computer science and combinatorial optimization [10]. However,
unlike spectral theory of undirected hypergraphs, there are very few results in spectral
theory of directed hypergraphs.

A directed hypergraph
−→
H is a pair (V (

−→
H ), E(

−→
H )), where V (

−→
H ) = [n] is the set of vertices

and E(
−→
H ) = {e1, e2, . . . , em} is the set of arcs. An arc e ∈ E(

−→
H ) is a pair e = (j1, e(j1)), where
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e(j1) = {j2, . . . , jt}, jl ∈ V (
−→
H ), and jl �= jh if l �= h for l, h ∈ [t] and t ∈ [n]. The vertex j1 is called

the tail (or out-vertex) and every other vertex j2, . . . , jt is called a head (or in-vertex) of the

arc e. The out-degree of a vertex j ∈ V (
−→
H ) is defined as d+

j = |E+
j |, where E+

j = {e ∈ E(
−→
H ) :

j is the tail of e}. If for any j ∈ V (
−→
H ), the degree d+

j has the same value d, then
−→
H is called

a directed d-out-regular hypergraph.

For a vertex i ∈ V (
−→
H ), we denote by Ei the set of arcs containing the vertex i, i.e., Ei = {e ∈

E(
−→
H ) : i ∈ e}. Two distinct vertices i and j are weak-connected if there is a sequence of arcs

(e1, . . . , et) such that i ∈ e1, j ∈ et , and er ∩ er+1 �= ∅ for all r ∈ [t – 1]. Two distinct vertices i
and j are strong-connected, denoted by i → j, if there is a sequence of arcs (e1, . . . , et) such
that i is the tail of e1, j is a head of et , and a head of er is the tail of er+1 for all r ∈ [t – 1].

A directed hypergraph is called weakly connected if every pair of different vertices of
−→
H

is weak-connected. A directed hypergraph is called strongly connected if every pair of

different vertices i and j of
−→
H satisfies i → j and j → i.

Similar to the definition of a k-uniform hypergraph, we define a k-uniform directed

hypergraph as follows: A directed hypergraph
−→
H = (V (

−→
H ), E(

−→
H )) is called a k-uniform

directed hypergraph if |e| = k for any arc e ∈ E(
−→
H ). When k = 2, then

−→
H is an ordinary

digraph.
The following definition for the adjacency tensor and signless Laplacian tensor of a di-

rected hypergraph was proposed by Chen and Qi in [5].

Definition 4.1 ([5]) Let
−→
H = (V (

−→
H ), E(

−→
H )) be a k-uniform directed hypergraph. The

adjacency tensor of the directed hypergraph
−→
H is defined as the order k dimension n

tensor A(
−→
H ), whose (i1i2 · · · ik)-entry is

(
A(

−→
H )

)
i1···ik =

⎧
⎨

⎩

1
(k–1)! , if (i1, e(i1)) ∈ E(

−→
H ) and e(i1) = (i2, . . . , ik),

0, otherwise.

Let D(
−→
H ) be an order k dimension n diagonal tensor with its diagonal entry dii···i being

d+
i , the out-degree of vertex i, for all i ∈ V (

−→
H ) = [n]. Then Q(

−→
H ) = D(

−→
H ) + A(

−→
H ) is the

signless Laplacian tensor of the directed hypergraph
−→
H .

Clearly, the adjacency tensor and the signless Laplacian tensor of a k-uniform directed

hypergraph
−→
H are nonnegative k-uniform tensors, but not symmetric in general. For any

1 ≤ i ≤ n, we have

ri
(
A(

−→
H )

)
=

n∑

i2,...,ik =1

(
A(

−→
H )

)
ii2···ik = d+

i

and

ri
(
Q(

−→
H )

)
=

n∑

i2,...,ik =1

(
Q(

−→
H )

)
ii2···ik = 2d+

i .

The following statement is an alternative explanation of weak irreducibility.
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Definition 4.2 ([9, 12]) Suppose that A = (ai1i2...ik )1≤ij≤n(j=1,...,k) is a nonnegative tensor of
order k and dimension n. We call a nonnegative matrix G(A) the representation associ-
ated matrix to the nonnegative tensor A if the (i, j)th entry of G(A) is defined to be the
summation of aii2...ik with indices {i2, . . . , ik} 
 j. We call the tensor A weakly reducible if
its representation G(A) is a reducible matrix.

Let A = (aij) be a nonnegative square matrix of order n. The associated digraph D(A) =
(V , E) of A (possibly with loops) is defined to be the digraph with vertex set V = {1, 2, . . . , n}
and arc set E = {(i, j) | aij > 0}.

Now we give a characterization of a strongly connected k-uniform directed hypergraph.

Theorem 4.3 Let
−→
H be a k-uniform directed hypergraph, A = A(

−→
H ) = (ai1i2···ik ) be the

adjacency tensor of
−→
H , G(A) be the representation associated matrix of A, and D(G(A)) be

the associated directed graph of G(A). Then the following four conditions are equivalent:
(i) A is weakly irreducible.

(ii) G(A) is irreducible.
(iii) D(G(A)) is strongly connected.

(iv)
−→
H is strongly connected.

Proof By Proposition 15 in [27] and A = A(
−→
H ) is a nonnegative tensor, we have (i) ⇔

(ii) ⇔ (iii). Now we show (iii) ⇔ (iv).
(iii) ⇒ (iv): Let D(G(A)) is strongly connected, now we show

−→
H is strongly connected.

For any i, j ∈ V (
−→
H ) = V (D(G(A))), there exists a directed path P from i to j in D(G(A))

by D(G(A)) being strongly connected. We assume P = ij1j2 · · · jt j, then (i, j1), (j1, j2), . . . ,
(jt , j) ∈ E(D(G(A))), which implies

∑
j1∈{i2,...,ik} aii2···ik > 0,

∑
j2∈{i2,...,ik} aj1i2···ik > 0, . . . ,

∑
jt∈{i2,...,ik} ajt–1i2···ik > 0, and

∑
j∈{i2,...,ik} ajt i2···ik > 0, thus there exists a sequence of arcs

(e1, e2, . . . , et , et+1), where el ∈ −→
H and l ∈ [t + 1], such that i is the tail of e1, j1 is a head of

e1, jl is the tail of el+1, jl+1 is a head of el+1 for 1 ≤ l ≤ t – 1, jt is the tail of et+1, j is a head of

et+1, say, i → j in H. Therefore
−→
H is strongly connected.

(iv) ⇒ (iii): Let
−→
H be strongly connected. Now we show that D(G(A)) is strongly con-

nected.
For any i, j ∈ V (D(G(A))) = V (

−→
H ), i → j in

−→
H by

−→
H being strongly connected, say,

there exists a sequence of arcs (e1, e2, . . . , et , et+1), where el ∈ −→
H for l ∈ [t + 1], such that

i is the tail of e1, j is a head of et+1, and a head of er is the tail of er+1 for all r ∈ [t]. We
assume that jr is the tail of er+1 and a head of er for all r ∈ [t], then

∑
j1∈{i2,...,ik} aii2···ik >

0,
∑

jr+1∈{i2,...,ik} ajri2···ik > 0 for 1 ≤ r ≤ t – 1, and
∑

j∈{i2,...,ik} ajt i2···ik > 0. Thus (i, j1) ∈
E(D(G(A))), (jr , jr+1) ∈ E(D(G(A))) for 1 ≤ r ≤ t – 1 and (jt , j) ∈ E(D(G(A))), which implies
that there exists a walk ij1j2 · · · jt j in D(G(A)). Therefore D(G(A)) is strongly connected. �

Recently, several papers studied the spectral radii of the adjacency tensor A(
−→
H ) and the

signless Laplacian tensor Q(
−→
H ) of a k-uniform directed hypergraph

−→
H (see [5, 24] and so

on).
Let

−→
H be a k-uniform directed hypergraph. If

−→
H is strongly connected, then by Theo-

rem 4.3 and the above definitions, A(
−→
H ) and thus Q(

−→
H ) are weakly irreducible. Thus we
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can apply Theorem 2.1 to the adjacency tensor A(
−→
H ) and the signless Laplacian tensor

Q(
−→
H ) of a (strongly connected) k-uniform directed hypergraph

−→
H . If k = 2, we obtain

Theorem 2.7 in [11]. If k ≥ 3, we obtain some new results about the bounds of ρ(A(
−→
H ))

and ρ(Q(
−→
H )) as follows.

Theorem 4.4 Let k ≥ 3,
−→
H be a k-uniform directed hypergraph with out-degree sequence

d+
1 ≥ · · · ≥ d+

n , A(
−→
H ) be the adjacency tensor of

−→
H . Let A1 = 1

k–1
(n–2

k–2
)
, φ1 = d+

1 , and

φs =
1
2

{

d+
s – A1 +

√√
√√(

d+
s + A1

)2 + 4A1

s–1∑

t=1

(
d+

t – d+
s
)
}

(4.1)

for 2 ≤ s ≤ n. Then

ρ
(
A(

−→
H )

) ≤ min
1≤s≤n

φs. (4.2)

Moreover, if
−→
H is a strongly connected k-uniform directed hypergraph, then the equality in

(4.2) holds if and only if d+
1 = d+

2 = · · · = d+
n .

Proof Let A = A(
−→
H ). We apply Theorem 2.1 to A(

−→
H ), then we have M = 0, N = 1

(k–1)! , ri =
d+

i for 1 ≤ i ≤ n, A1 = N1, and (4.1) is from (2.1). Thus (4.2) holds by Theorem 2.1, and the
equality in (4.2) holds if and only if d+

1 = d+
2 = · · · = d+

n by Theorem 2.1 and Theorem 4.3. �

Theorem 4.5 Let k ≥ 3,
−→
H be a k-uniform directed hypergraph with out-degree sequence

d+
1 ≥ · · · ≥ d+

n , Q(
−→
H ) be the signless Laplacian tensor of

−→
H . Let A1 = 1

k–1
(n–2

k–2
)
, ψ1 = 2d+

1 ,
and

ψs =
1
2

{

2d+
s + d+

1 – A1 +

√√√
√(

2d+
s – d+

1 + A1
)2 + 8A1

s–1∑

t=1

(
d+

t – d+
s
)
}

(4.3)

for 2 ≤ s ≤ n. Then

ρ
(
Q(

−→
H )

) ≤ min
1≤s≤n

ψs. (4.4)

Moreover, if
−→
H is a strongly connected k-uniform directed hypergraph, then the equality in

(4.4) holds if and only if d+
1 = d+

2 = · · · = d+
n .

Proof LetA = Q(
−→
H ). We apply Theorem 2.1 toQ(

−→
H ), then we have M = d+

1 , N = 1
(k–1)! , ri =

2d+
i for 1 ≤ i ≤ n, A1 = N1, and (4.3) is from (2.1). Thus (4.4) holds by Theorem 2.1, and the

equality in (4.4) holds if and only if d+
1 = d+

2 = · · · = d+
n by Theorem 2.1 and Theorem 4.3. �

Acknowledgements
The authors would like to thank the referees for their valuable comments, corrections, and suggestions, which lead to an
improvement of the original manuscript.



Lv et al. Journal of Inequalities and Applications         (2020) 2020:32 Page 15 of 16

Funding
The research is supported by the National Natural Science Foundation of China (Grant Nos. 11971180, 11571123,
11531001), the Guangdong Provincial Natural Science Foundation (Grant No. 2019A1515012052), the
Montenegrin-Chinese Science and Technology Cooperation Project (No. 3-12).

Abbreviations
P.R. China, People’s Republic of China; MOE-LSC, Key Laboratory of Scientific and Engineering Computing (Ministry of
Education); SHL-MAC, Shanghai municipal education commission key laboratory of multi-physics modeling analysis and
computation; Grant Nos, Grant Numbers; Grant No, Grant Number; i.e., id est; Commun. Math. Sci., Communications in
Mathematical Sciences; Front. Math. China, Frontiers of Mathematics in China; J. Ind. Manag. Optim., Journal of Industrial
and Management Optimization; Linear Algebra Appl., Linear Algebra and Its Applications; Discrete Appl. Math., Discrete
Applied Mathematics; Sci. China Math., Science China-Mathematics; Inform. Process. Lett., Information Processing Letters;
Numer. Math., Numerische Mathematik; IEEE,: Institute of Electrical and Electronics Engineers; CAMSAP, Computational
Advances in Multi-Sensor Adaptive Processing; Appl. Math. Comput., Applied Mathematics and Computation; Graphs
Combin.,: Graphs and Combinatorics; J. Symbolic Comput.,: Journal of Symbolic Computation; SIAM J. Matrix Anal. Appl.,:
SIAM Journal on Matrix Analysis and Applications..

Availability of data and materials
Not applicable in this work.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1School of Mathematical Sciences, South China Normal University, Guangzhou, P.R. China. 2Department of Mathematics,
Jilin Medical University, Jilin, P.R. China. 3School of Mathematical Sciences, MOE-LSC, SHL-MAC, Shanghai Jiao Tong
University, Shanghai, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 September 2019 Accepted: 3 February 2020

References
1. Berge, C.: Hypergraph. Combinatorics of Finite Sets, 3rd edn. North-Holland, Amsterdam (1973)
2. Brualdi, R.A.: Introductory Combinatorics, 3rd edn. China Machine Press, Beijing (2002)
3. Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2),

507–520 (2008)
4. Chen, D.M., Chen, Z.B., Zhang, X.D.: Spectral radius of uniform hypergraphs and degree sequences. Front. Math. China

6, 1279–1288 (2017)
5. Chen, Z.M., Qi, L.Q.: Circulant tensors with applications to spectral hypergraph theory and stochastic process. J. Ind.

Manag. Optim. 12(4), 1227–1247 (2016)
6. Cooper, J., Dutle, A.: Spectral of uniform hypergraph. Linear Algebra Appl. 436, 3268–3292 (2012)
7. Duan, X., Zhou, B.: Sharp bounds on the spectral radius of a nonnegative matrix. Linear Algebra Appl. 439, 2961–2970

(2013)
8. Ducournau, A., Bretto, A.: Random walks in directed hypergraphs and application to semi-supervised image

segmentation. Comput. Vis. Image Underst. 120, 91–102 (2014)
9. Friedland, S., Gaubert, A., Han, L.: Perron–Frobenius theorems for nonnegative multilinear forms and extensions.

Linear Algebra Appl. 438, 738–749 (2013)
10. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42,

177–201 (1993)
11. Hong, W.X., You, L.H.: Spectral radius and signless Laplacian spectral radius of strongly connected digraphs. Linear

Algebra Appl. 457, 93–113 (2014)
12. Hu, S.L., Huang, Z.H., Qi, L.Q.: Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math. 57(1),

181–195 (2014)
13. Khan, M., Fan, Y.: On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. Linear Algebra

Appl. 480, 93–106 (2015)
14. Li, C.Q., Li, Y.T., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21(1), 39–50 (2014)
15. Li, K., Wang, L.S.: A polynomial time approximation scheme for embedding a directed hypergraph on a ring. Inf.

Process. Lett. 97, 203–207 (2006)
16. Li, W., Michael, K.N.: Some bounds for the spectral radius of nonnegative tensors. Numer. Math. 130(2), 315–335

(2015)
17. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the 1st IEEE

International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), pp. 129–132
(2005)

18. Lim, L.H.: Foundations of numerical multilinear algebra: decomposition and approximation of tensors. Dissertation
(2007)



Lv et al. Journal of Inequalities and Applications         (2020) 2020:32 Page 16 of 16

19. Lin, H.Y., Mo, B., Zhou, B., Weng, W.: Sharp bounds for ordinary and signless Laplacian spectral radii of uniform
hypergraphs. Appl. Math. Comput. 285, 217–227 (2016)

20. Pearson, K., Zhang, T.: On spectral hypergraph theory of the adjacency tensor. Graphs Comb. 30(5), 1233–1248 (2014)
21. Qi, L.Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
22. Shao, J.Y.: A general product of tensors with applications. Linear Algebra Appl. 439, 2350–2366 (2013)
23. Shao, J.Y., Shan, H.Y., Zhang, L.: On some properties of the determinants of tensors. Linear Algebra Appl. 439,

3057–3069 (2013)
24. Xie, J.S., Qi, L.Q.: Spectral directed hypergraph theory via tensors. Linear Multilinear Algebra 64(4), 780–794 (2016)
25. Yang, Y.N., Yang, Q.Z.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl.

31(5), 2517–2530 (2010)
26. Yang, Y.N., Yang, Q.Z.: On some properties of nonnegative weakly irreducible tensors (2011). arXiv:1111.0713v2
27. You, L.H., Huang, X.H., Yuan, X.Y.: Sharp bounds for spectral radius of nonnegative weakly irreducible tensors. Front.

Math. China 14(5), 989–1015 (2019)
28. Yuan, X.Y., Zhang, M., Lu, M.: Some upper bounds on the eigenvalues of uniform hypergraphs. Linear Algebra Appl.

484, 540–549 (2015)

http://arxiv.org/abs/arXiv:1111.0713v2

	A sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and its applications to (directed) hypergraphs
	Abstract
	MSC
	Keywords

	Introduction
	Main results
	Applications to a k-uniform hypergraph
	Applications to k-uniform directed hypergraph
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


