Skip to main content
Log in

Traveling waves of a colloidal suspension in a closed cell

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Two-dimensional oscillatory flows in the convective cell filled with a colloidal suspension are investigated. We consider transient and permanent evolution scenarios of the traveling wave that were found in experimental investigation (Donzelli et al. in Phys Rev Lett 102:104503, 2009). The nanoparticle transport mechanisms (thermodiffusion and gravity settling) are analyzed and elucidated with the help of finite-difference numerical simulations for Hyflon MFA colloidal suspension. The spatiotemporal characteristics of the stable (permanent) traveling waves are determined. The dependence of the Rayleigh number on the Lewis number at the boundary of existence of the stable traveling wave is obtained.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Donzelli, R. Cerbino, A. Vailati, Phys. Rev. Lett. 102, 104503 (2009)

    Article  ADS  Google Scholar 

  2. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  3. J. Platten, J.C. Legros, Convection in Liquids (Springer, Berlin, 1984)

    Book  Google Scholar 

  4. R.W. Walden et al., Phys. Rev. Lett. 55, 496 (1985)

    Article  ADS  Google Scholar 

  5. M. Lücke et al., Evolution of Structures in Dissipative Continuous Systems, 127, edited by F. H. Busse and S. C. Müller, Lecture Notes in Physics, Vol. m55 (Springer, Berlin, 1998)

  6. M. Lücke, W. Barten, M. Kamps, Physica D 61, 183 (1992)

    Article  ADS  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)

    Google Scholar 

  8. W. Köhler, K.I. Morozov, J. Non-Equilib, Thermodyn 41, 151–197 (2016)

    Google Scholar 

  9. E. Blums et al., J. Magn. Magn. Mater. 169(1), 220 (1997)

    Article  ADS  Google Scholar 

  10. R. Cerbino, A. Vailati, M. Giglio, Phys. Rev. E 66, 055301(R) (2002)

    Article  ADS  Google Scholar 

  11. M. Bernardin, F. Comitani, A. Vailati, Phys. Rev. E 85, 066321 (2012)

  12. M. Mason, W. Weaver, Phys. Rev. 23, 412–426 (1924)

    Article  ADS  Google Scholar 

  13. M.I. Shliomis, B.L. Smorodin, Phys. Rev. E 71, 036312 (2005)

  14. J. Buongiorno, Trans. ASME. J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  15. B.L. Smorodin et al., Phys. Rev. E 84, 026305 (2011)

  16. F. Winkel et al., New J. Phys. 12, 053003 (2010)

  17. B. Huke, H. Pleiner, M. Lücke, Phys. Rev. E 75, 036203 (2007)

  18. G.F. Putin, Proceedings of the 11th Riga workshop on magnetic hydrodynamics, 15, Vol. 3 (Riga, 1984)

  19. A.F. Glukhov, S. Sidorov, Fluid Dyn. 54(4), 451–456 (2019)

    Article  ADS  Google Scholar 

  20. M.T. Krauzin et al., J. Magn. Magn. Mater. 431, 241 (2017)

    Article  ADS  Google Scholar 

  21. A.A. Bozhko et al., Magnetohydrodynamics 49(1–2), 143 (2013)

    Article  Google Scholar 

  22. N.V. Kolchanov, Int. J. Heat Mass Transf. 89, 90 (2015)

    Article  Google Scholar 

  23. P.J. Roache, Computational fluid dynamics, (Hermosa, Albuquerque, New Mexico, United States, 1976)

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Researches (Project No. 20-01-00491).

Author information

Authors and Affiliations

Authors

Contributions

B.L. Smorodin made contribution to the conception and design of the study, developing methodology, analysis and interpretation of numerical results, drafting the paper and final approval of its version to be published; he also acts as the corresponding author. I.N. Cherepanov contributed to the statement of the problem, the computer modeling, performance of simulations, analysis and interpretation of numerical results, as well as final approval of the article version to be published.

Corresponding author

Correspondence to Boris Smorodin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, I., Smorodin, B. Traveling waves of a colloidal suspension in a closed cell. Eur. Phys. J. E 45, 39 (2022). https://doi.org/10.1140/epje/s10189-022-00192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00192-4

Navigation