Skip to main content
Log in

The influence of the structure of atomic systems on the dynamics of electron exchange in ion–ion collision

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

One electron exchange between the Rydberg states of ions is elaborated within the time-symmetrized framework of two-wave-function model. It was observed that in an atomic collision, the population of ionic states by electron exchange, is strongly conditioned by the structure of the subsystem itself, especially at intermediate velocities. This circumstance is particularly pronounced when determining the ion–ion distances at which the charge exchange is most likely. The specificity of the model is reflected in the fact that the determination of the electron capture distance is carried out at fixed initial and final states of the system under consideration. As an illustrative example, XeVIII was used as a target of collision process, i.e. ion Xe\(^{8+}\) initially populated in Rydberg state \(\nu _B=(n_B=8,l_B=0,m_B=0)\), while argon ions Ar\(^{Z_A+}\) were used as projectiles in the core charge range \(Z_A\in [3,9]\).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data supporting the findings of this study are available within the article.]

References

  1. P. Zhang, A. Dalgarno, R. Côté, E. Bodo, Phys. Chem. Chem. Phys. 13, 19026–19035 (2011)

    Article  Google Scholar 

  2. I. Skobelev, I. Murakami, T. Kato, Astron. Astrophys. 511, A60 (2010)

    Article  ADS  Google Scholar 

  3. I.Y. Tolstikhina, V.P. Shevelko, Phys.-Usp. 56, 213 (2013)

    Article  ADS  Google Scholar 

  4. H.K. Chung, B.J. Braams, K. Bartschat, A.G. Császár, G.W.F. Drake, T. Kirchner, V. Kokoouline, J. Tennyson, J. Phys. D Appl. Phys. 49, 363002 (2016)

    Article  Google Scholar 

  5. T. Sikorsky, Z. Meir, R. Ben-shlomi, N. Akerman, R. Ozeri, Nat. Commun. 9, 1–5 (2018)

    Article  Google Scholar 

  6. H. Bräuning, E. Salzborn, InAIP Conf. Proc. 771, 219–228 (2005)

    ADS  Google Scholar 

  7. V.N. Ostrovsky, Phys. Rev. A 49, 3740 (1994)

    Article  ADS  Google Scholar 

  8. Y.D. Wang, C.D. Lin, N. Toshima, Z. Chen, Phys. Rev. A 52, 2852 (1995)

    Article  ADS  Google Scholar 

  9. R.K. Janev, in Atomic Processes in Electron-Ion and Ion–Ion Collisions, NATO ASI Series (Series B: Physics), vol. 145, ed. by F. Brouillard (Springer, Boston, 1986)

    Google Scholar 

  10. S.M.D. Galijaš, G.B. Poparić, Eur. Phys. J. D. 75, 111 (2021)

    Article  ADS  Google Scholar 

  11. Yu.N. Demkov, V.N. Ostrovskii, Zh. Exp, Teor. Fiz. 69, 1582 (1975)

    Google Scholar 

  12. O.B. Firsov, J. Exptl. Theoret. Phys. 36, 1517–1523 (1959)

    Google Scholar 

  13. N.N. Nedeljković, L.D. Nedeljković, S.B. Vojvodić, M.A. Mirković, Phys. Rev. B 49, 5621 (1994)

    Article  ADS  Google Scholar 

  14. L.D. Nedeljković, N.N. Nedeljković, Phys. Rev. B 58, 16455 (1998)

    Article  ADS  Google Scholar 

  15. N.N. Nedeljković, L.D. Nedeljković, M.A. Mirković, Phys. Rev. A 68, 012721 (2003)

    Article  ADS  Google Scholar 

  16. L.D. Nedeljković, N.N. Nedeljković, Phys. Rev. A 67, 032709 (2003)

    Article  ADS  Google Scholar 

  17. J. Burgdörfer, P. Lerner, F. Meyer, Phys. Rev. A 44, 5674 (1991)

  18. A. Borisov, R. Zimny, D. Teillet-Billy, J. Gauyacq, Phys. Rev. A 53, 2457 (1996)

    Article  ADS  Google Scholar 

  19. J. Hanssen, C.F. Martin, P. Nordlander, Surf. Sci. 423, L271 (1999)

    Article  ADS  Google Scholar 

  20. P. Kürpick, U. Thumm, U. Wille, Phys. Rev. A 57, 1920 (1998)

  21. N.N. Nedeljković, M.D. Majkić, Phys. Rev. A 76, 042902 (2007)

    Article  ADS  Google Scholar 

  22. Yu. Ralchenko, F.C. Yoy, D.E. Kelleher, A.E. Kramida, A. Musgrove, J. Reader, W.L. Wiese, K. Olsen, NIST Atomic Spectra Database. https://physics.nist.gov/PhysRefData/ASD/levels_form.html, Gaithersburg (2007)

  23. E.B. Saloman, J. Phys. Chem. Ref. Data 39, 033101 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor N. N. Nedeljkovi\(\acute{\text {c}}\) for useful discussions. This work is supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia through project No.451-03-68/2022-14/200162.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this manuscript.

Corresponding author

Correspondence to S. M. D. Galijaš.

Additional information

Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: Fundamentals and Applications. Guest editors: Bratislav Obradović, Jovan Cvetić, Dragana Ilić, Vladimir Srećković and Sylwia Ptasinska.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galijaš, S.M.D., Poparić, G.B. The influence of the structure of atomic systems on the dynamics of electron exchange in ion–ion collision. Eur. Phys. J. D 77, 16 (2023). https://doi.org/10.1140/epjd/s10053-023-00596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00596-7

Navigation