Skip to main content
Log in

Attosecond coupled electron-nuclear dynamics of H\(_2\) molecule under intense laser fields

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Sequential double ionization and fragmentation dynamics of the H\(_2\) molecule exposed to an 750 nm, 4.5 fs elliptically polarized laser pulse is investigated by employing a quasi-classical model. In the model, momentum-dependent auxiliary potentials are added to the Hamiltonian to account for non-classical effects. Through theoretical exploitation of the molecular clock technique, the evolution of the vibrational wave packet of H\(_2^+\) formed by over-the-barrier ionization of the H\(_2\) molecule is tracked between the first and second ionization events with the temporal resolution of 140 attoseconds. The role of electron correlation in strong field ionization is captured. Our results show that the quasi-classical model is quite capable of describing and predicting light-induced multi-electron processes in the molecules. Our study provides a simple path of explaining and understanding the physical mechanism of the strong field multi-electron processes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment:Data is available from the corresponding author on reasonable request. ].

References

  1. M. Garg, A. Martin-Jimenez, M. Pisarra, Y. Luo, F. Martín, K. Kern, Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nat. Photonics (2021). https://doi.org/10.1038/s41566-021-00929-1

    Article  Google Scholar 

  2. F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva et al., Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346(6207), 336–339 (2014). https://doi.org/10.1126/science.1254061

    Article  ADS  Google Scholar 

  3. D. Dey, N.E. Henriksen, On weak-field (one-photon) coherent control of photoisomerization. J. Phys. Chem. Lett. 11(20), 8470–8476 (2020). https://doi.org/10.1021/acs.jpclett.0c02273

    Article  Google Scholar 

  4. C.-C. Shu, K.-J. Yuan, D. Dong, I.R. Petersen, A.D. Bandrauk, Identifying strong-field effects in indirect photofragmentation reactions. J. Phys. Chem. Lett. 8(1), 1–6 (2017). https://doi.org/10.1021/acs.jpclett.6b02613

    Article  Google Scholar 

  5. S. Nandi, E. Plésiat, S. Zhong, A. Palacios, D. Busto, M. Isinger, L. Neoričić, C. Arnold, R. Squibb, R. Feifel et al., Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6(31), 7762 (2020). https://doi.org/10.1126/sciadv.aba7762

    Article  ADS  Google Scholar 

  6. A.K. Tiwari, S. Kolakkandy, N. Sathyamurthy, Importance of Coriolis coupling in isotopic branching in (\({\rm He, HD}^+\)) collisions. J. Phys. Chem. A 113(34), 9568–9574 (2009). https://doi.org/10.1021/jp9049523

    Article  Google Scholar 

  7. G.K. Paramonov, O. Kühn, A.D. Bandrauk, Shaped post-field electronic oscillations in \({\rm H}_2^+\) excited by two-cycle laser pulses: three-dimensional non-Born-Oppenheimer. J. Phys. Chem. A 120(19), 3175–3185 (2016). https://doi.org/10.1021/acs.jpca.5b11599

    Article  Google Scholar 

  8. D. Mathur, K. Dota, A.K. Dharmadhikari, J.A. Dharmadhikari, Carrier-envelope-phase effects in ultrafast strong-field ionization dynamics of multielectron systems: Xe and \({\rm CS}_{2}\). Phys. Rev. Lett. 110, 083602 (2013). https://doi.org/10.1103/PhysRevLett.110.083602

    Article  ADS  Google Scholar 

  9. K. Dota, M. Garg, A.K. Tiwari, J.A. Dharmadhikari, A.K. Dharmadhikari, D. Mathur, Intense two-cycle laser pulses induce time-dependent bond hardening in a polyatomic molecule. Phys. Rev. Lett. 108, 073602 (2012). https://doi.org/10.1103/PhysRevLett.108.073602

    Article  ADS  Google Scholar 

  10. D. Mathur, A.K. Dharmadhikari, F.A. Rajgara, J.A. Dharmadhikari, Molecular symmetry effects in the ionization of \({\rm CS}_{2}\) by intense few-cycle laser pulses. Phys. Rev. A 78, 013405 (2008). https://doi.org/10.1103/PhysRevA.78.013405

    Article  ADS  Google Scholar 

  11. T. Okino, Y. Furukawa, Y. Nabekawa, S. Miyabe, A. Amani Eilanlou, E.J. Takahashi, K. Yamanouchi, K. Midorikawa, Direct observation of an attosecond electron wave packet in a nitrogen molecule. Adv. Sci. (2015). https://doi.org/10.1126/sciadv.1500356

    Article  Google Scholar 

  12. S. Patchkovskii, M.S. Schuurman, Full-dimensional treatment of short-time vibronic dynamics in a molecular high-order-harmonic-generation process in methane. Phys. Rev. A 96, 053405 (2017). https://doi.org/10.1103/PhysRevA.96.053405

    Article  ADS  Google Scholar 

  13. S. Baker, J. Robinson, C. Haworth, C. Chirila, M. Lein, J. Tisch, J. Marangos, Probing fast nuclear wavepackets in light molecules: monitoring structural rearrangement on an attosecond timescale. J. Mod. Opt. 54(7), 1011–1017 (2007). https://doi.org/10.1080/09500340601022516

    Article  ADS  MATH  Google Scholar 

  14. K. Amini, M. Sclafani, T. Steinle, A.-T. Le, A. Sanchez, C. Müller, J. Steinmetzer, L. Yue, J.R.M. Saavedra, M. Hemmer et al., Imaging the Renner-Teller effect using laser-induced electron diffraction. Proc. Natl. Acad. Sci. U.S.A. 116(17), 8173–8177 (2019). https://doi.org/10.1073/pnas.1817465116

    Article  ADS  Google Scholar 

  15. P. Eckle, A. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. Muller, M. Büttiker, U. Keller, Attosecond ionization and tunneling delay time measurements in helium. Science 322(5907), 1525–1529 (2008). https://doi.org/10.1126/science.1163439

    Article  ADS  Google Scholar 

  16. A.N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-Samha, L.B. Madsen, U. Keller, Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nat. Phys. 8(1), 76–80 (2012). https://doi.org/10.1038/nphys2125

    Article  Google Scholar 

  17. A.N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dörner, U. Keller, Timing the release in sequential double ionization. Nat. Phys. 7(5), 428–433 (2011). https://doi.org/10.1038/nphys1946

    Article  Google Scholar 

  18. P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H.G. Muller, R. Dörner, U. Keller, Attosecond angular streaking. Nat. Phys. 4(7), 565–570 (2008). https://doi.org/10.1038/nphys982

    Article  Google Scholar 

  19. M.S. Schöffler, X. Xie, P. Wustelt, M. Möller, S. Roither, D. Kartashov, A.M. Sayler, A. Baltuska, G.G. Paulus, M. Kitzler et al., Laser-subcycle control of sequential double-ionization dynamics of helium. Phys. Rev. A 93(6), 063421 (2016). https://doi.org/10.1103/PhysRevA.93.063421

    Article  ADS  Google Scholar 

  20. P. Wustelt, M. Möller, M.S. Schöffler, X. Xie, V. Hanus, A.M. Sayler, A. Baltuska, G.G. Paulus, M. Kitzler et al., Numerical investigation of the sequential-double-ionization dynamics of helium in different few-cycle-laser-field shapes. Phys. Rev. A 95(2), 023411 (2017). https://doi.org/10.1103/PhysRevA.95.023411

    Article  ADS  Google Scholar 

  21. V. Hanus, S. Kangaparambil, S. Larimian, M. Dorner-Kirchner, X. Xie, M.S. Schöffler, G.G. Paulus, A. Baltuška, A. Staudte, M. Kitzler-Zeiler et al., Subfemtosecond tracing of molecular dynamics during strong-field interaction. Phys. Rev. Lett. 123(26), 263201 (2019). https://doi.org/10.1103/PhysRevLett.123.263201

    Article  ADS  Google Scholar 

  22. G.K. Paramonov, T. Klamroth, H. Lu, A.D. Bandrauk, Quantum dynamics, isotope effects, and power spectra of \({\rm H}_2^+\) and \({\rm HD}^+\) excited to the continuum by strong one-cycle laser pulses: three-dimensional non-Born-Oppenheimer simulations. Phys. Rev. A 98(6), 063431 (2018). https://doi.org/10.1103/PhysRevA.98.063431

    Article  ADS  Google Scholar 

  23. J.L. Sanz-Vicario, H. Bachau, F. Martín, Time-dependent theoretical description of molecular autoionization produced by femtosecond XUV laser pulses. Phys. Rev. A 73, 033410 (2006). https://doi.org/10.1103/PhysRevA.73.033410

    Article  ADS  Google Scholar 

  24. F. Kelkensberg, W. Siu, J.F. Pérez-Torres, F. Morales, G. Gademann, A. Rouzée, P. Johnsson, M. Lucchini, F. Calegari, J.L. Sanz-Vicario, F. Martín, M.J.J. Vrakking, Attosecond control in photoionization of hydrogen molecules. Phys. Rev. Lett. 107, 043002 (2011). https://doi.org/10.1103/PhysRevLett.107.043002

    Article  ADS  Google Scholar 

  25. G. Sansone, F. Kelkensberg, J. Pérez-Torres, F. Morales, M.F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti et al., Electron localization following attosecond molecular photoionization. Nature 465(7299), 763–766 (2010). https://doi.org/10.1038/nature09084

    Article  ADS  Google Scholar 

  26. D. Dey, A.K. Tiwari, Coupled electron-nuclear dynamics on \({\rm H}_2^+\) within time-dependent Born-Oppenheimer approximation. J. Phys. Chem. A 120(42), 8259–8266 (2016). https://doi.org/10.1021/acs.jpca.6b09004

    Article  Google Scholar 

  27. M. Garg, A.K. Tiwari, D. Mathur, Quantum dynamics of \(\rm H_2^+\) in intense laser fields on time-dependent potential energy surfaces. J. Phys. Chem. A 116(34), 8762–8767 (2012). https://doi.org/10.1021/jp305712d

    Article  Google Scholar 

  28. W. Vanroose, F. Martin, T.N. Rescigno, C.W. McCurdy, Complete photo-induced breakup of the \(\rm H_2\) molecule as a probe of molecular electron correlation. Science 310(5755), 1787–1789 (2005). https://doi.org/10.1126/science.1120263

    Article  ADS  Google Scholar 

  29. D.J. Haxton, K.V. Lawler, C.W. McCurdy, Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear dynamics in diatomic molecules. Phys. Rev. A 83, 063416 (2011). https://doi.org/10.1103/PhysRevA.83.063416

    Article  ADS  Google Scholar 

  30. D.S. Slaughter, F.P. Sturm, R.Y. Bello, K.A. Larsen, N. Shivaram, C.W. McCurdy, R.R. Lucchese, L. Martin, C.W. Hogle, M.M. Murnane, H.C. Kapteyn, P. Ranitovic, T. Weber, Nonequilibrium dissociative dynamics of \({\rm D}_{2}\) in two-color, few-photon excitation and ionization. Phys. Rev. Res. 3, 033191 (2021). https://doi.org/10.1103/PhysRevResearch.3.033191

    Article  Google Scholar 

  31. X. Guan, K. Bartschat, B.I. Schneider, L. Koesterke, Resonance effects in two-photon double ionization of \({\rm H}_{2}\) by femtosecond XUV laser pulses. Phys. Rev. A 88, 043402 (2013). https://doi.org/10.1103/PhysRevA.88.043402

    Article  ADS  Google Scholar 

  32. X. Guan, K. Bartschat, B.I. Schneider, Alignment effects in two-photon double ionization of \({\rm H}_{2}\) in femtosecond XUV laser pulses. Phys. Rev. A 84, 033403 (2011). https://doi.org/10.1103/PhysRevA.84.033403

    Article  ADS  Google Scholar 

  33. X. Guan, K. Bartschat, B.I. Schneider, Breakup of the aligned \({\rm H}_{2}\) molecule by XUV laser pulses: a time-dependent treatment in prolate spheroidal coordinates. Phys. Rev. A 83, 043403 (2011). https://doi.org/10.1103/PhysRevA.83.043403

    Article  ADS  Google Scholar 

  34. X. Guan, K. Bartschat, B.I. Schneider, L. Koesterke, Alignment and pulse-duration effects in two-photon double ionization of \({\rm H}_{2}\) by femtosecond XUV laser pulses. Phys. Rev. A 90, 043416 (2014). https://doi.org/10.1103/PhysRevA.90.043416

    Article  ADS  Google Scholar 

  35. J.S. Parker, B.J. Doherty, K.T. Taylor, K.D. Schultz, C.I. Blaga, L.F. DiMauro, High-energy cutoff in the spectrum of strong-field nonsequential double ionization. Phys. Rev. Lett. 96(13), 133001 (2006). https://doi.org/10.1103/PhysRevLett.96.133001

    Article  ADS  Google Scholar 

  36. K. Sacha, B. Eckhardt, Pathways to double ionization of atoms in strong fields. Phy. Rev. A 63(4), 043414 (2001). https://doi.org/10.1103/PhysRevA.63.043414

    Article  ADS  Google Scholar 

  37. S. Haan, L. Breen, A. Karim, J. Eberly, Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization. Phys. Rev. Lett. 97(10), 103008 (2006). https://doi.org/10.1103/PhysRevLett.97.103008

    Article  ADS  Google Scholar 

  38. P.J. Ho, R. Panfili, S.L. Haan, J.H. Eberly, Nonsequential double ionization as a completely classical photoelectric effect. Phys. Rev. Lett. 94, 093002 (2005). https://doi.org/10.1103/PhysRevLett.94.093002

    Article  ADS  Google Scholar 

  39. H. Chomet, C. Figueira de Morisson Faria, Attoscience in phase space. Eur. Phys. J. D 75(7), 1–25 (2021). https://doi.org/10.1140/epjd/s10053-021-00199-0

    Article  ADS  Google Scholar 

  40. G.P. Katsoulis, R. Sarkar, A. Emmanouilidou, Enhancing frustrated double ionization with no electronic correlation in triatomic molecules using counter-rotating two-color circular laser fields. Phys. Rev. A 101, 033403 (2020). https://doi.org/10.1103/PhysRevA.101.033403

    Article  ADS  Google Scholar 

  41. M.B. Peters, V.P. Majety, A. Emmanouilidou, Triple ionization and frustrated triple ionization in triatomic molecules driven by intense laser fields. Phys. Rev. A 103, 043109 (2021). https://doi.org/10.1103/PhysRevA.103.043109

    Article  ADS  Google Scholar 

  42. C.L. Kirschbaum, L. Wilets, Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A 21, 834–841 (1980). https://doi.org/10.1103/PhysRevA.21.834

    Article  ADS  MathSciNet  Google Scholar 

  43. L. Wilets, J.S. Cohen, Fermion molecular dynamics in atomic, molecular, and optical physics. Contemp. Phys. 39(3), 163–175 (1998). https://doi.org/10.1080/001075198181991

    Article  ADS  Google Scholar 

  44. J.S. Cohen, Quasiclassical effective Hamiltonian structure of atoms with z=1 to 38. Phys. Rev. A 51, 266–277 (1995). https://doi.org/10.1103/PhysRevA.51.266

    Article  ADS  Google Scholar 

  45. Y. Zhou, C. Huang, Q. Liao, P. Lu, Classical simulations including electron correlations for sequential double ionization. Phys. Rev. Lett. 109, 053004 (2012). https://doi.org/10.1103/PhysRevLett.109.053004

    Article  ADS  Google Scholar 

  46. E. Lötstedt, T. Kato, K. Yamanouchi, Classical dynamics of laser-driven \({\rm D}_{3}^{+}\). Phys. Rev. Lett. 106, 203001 (2011). https://doi.org/10.1103/PhysRevLett.106.203001

    Article  ADS  Google Scholar 

  47. G. Pandey, D. Dey, A.K. Tiwari, Controlling the ultrafast dynamics of \({\rm HD}^+\) by the carrier-envelope phases of an ultrashort laser pulse: A quasi-classical dynamics study. J. Phys. Chem. A 124(47), 9710–9720 (2020). https://doi.org/10.1021/acs.jpca.0c08979

    Article  Google Scholar 

  48. D. Dey, D. Ray, A.K. Tiwari, Controlling electron dynamics with carrier-envelope phases of a laser pulse. J. Phys. Chem. A 123(22), 4702–4707 (2019). https://doi.org/10.1021/acs.jpca.9b02870

    Article  Google Scholar 

  49. K.J. LaGattuta, Behavior of \({\rm H}_{2}^{+}\) and \({\rm H}_{2}\) in strong laser fields simulated by fermion molecular dynamics. Phys. Rev. A 73, 043404 (2006). https://doi.org/10.1103/PhysRevA.73.043404

    Article  ADS  Google Scholar 

  50. F. Frémont, Quasiclassical treatment of the auger effect in slow ion-atom collisions. Phys. Rev. A 96, 032712 (2017). https://doi.org/10.1103/PhysRevA.96.032712

  51. E. Lötstedt, T. Kato, K. Yamanouchi, A classical model of \({\rm H}_3^+\) in an intense laser field. J. Phys. B: At. Mol. Opt. Phys. 46(23), 235601 (2013). https://doi.org/10.1088/0953-4075/46/23/235601

    Article  ADS  Google Scholar 

  52. J.S. Cohen, Molecular effects on antiproton capture by \({\rm H}_{2}\) and the states of \(\overline{p}p\) formed. Phys. Rev. A 56, 3583–3596 (1997). https://doi.org/10.1103/PhysRevA.56.3583

  53. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  54. S. Pan, W. Zhang, H. Li, C. Lu, W. Zhang, Q. Ji, H. Li, F. Sun, J. Qiang, F. Chen, J. Tong, L. Zhou, W. Jiang, X. Gong, P. Lu, J. Wu, Clocking dissociative above-threshold double ionization of \({\rm H}_{2}\) in a multicycle laser pulse. Phys. Rev. Lett. 126, 063201 (2021). https://doi.org/10.1103/PhysRevLett.126.063201

    Article  ADS  Google Scholar 

  55. A. Giusti-Suzor, F.H. Mies, L.F. DiMauro, E. Charron, B. Yang, Dynamics of \({\rm H}_2^+\) in intense laser fields. J. Phys. B 28(3), 309–339 (1995). https://doi.org/10.1088/0953-4075/28/3/006

    Article  ADS  Google Scholar 

  56. V. Hanus, S. Kangaparambil, S. Larimian, M. Dorner-Kirchner, X. Xie, M.S. Schöffler, G.G. Paulus, A. Baltuška, A. Staudte, M. Kitzler-Zeiler, Experimental separation of subcycle ionization bursts in strong-field double ionization of \({\rm H}_{2}\). Phys. Rev. Lett. 124, 103201 (2020). https://doi.org/10.1103/PhysRevLett.124.103201

    Article  ADS  Google Scholar 

  57. T. Weber, A.O. Czasch, O. Jagutzki, A. Müller, V. Mergel, A. Kheifets, E. Rotenberg, G. Meigs, M.H. Prior, S. Daveau et al., Complete photo-fragmentation of the deuterium molecule. Nature (London) 431(7007), 437–440 (2004). https://doi.org/10.1038/nature02839

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Diptesh Dey for the helpful discussion. This work is financially supported by Science and Engineering Research Board (SERB) New Delhi, India, through Project No. CRG/2020/000040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani K. Tiwari.

Appendix A: equilibrium configuration and sampling of initial conditions

Appendix A: equilibrium configuration and sampling of initial conditions

The equilibrium configuration of the H\(_2\) molecule is obtained by minimizing the quasi-classical Hamiltonian of H\(_2\) given in Eq. 1 of the main text. Minimization is performed by using the downhill simplex algorithm. The minimization procedure is repeated several times with various random initial positions and momenta to ensure the attainment of the global energy minimum.

The calculated ground-state energy of the molecule, \(E_\mathrm{initial} = -1.17283\) a.u. is in good agreement with the experimental value \(-1.16698\) a.u. Taking the obtained equilibrium configuration as an initial condition, a field trajectory is run for a sufficiently large time (more than 3 times of the simulation time in the presence of laser field) to check the stability of the molecule. The energy of the field-free molecule has been found to be constant with time which confirms that in the absence of the laser field, our molecule is stable and remains in the ground state. Fig. 6 shows the temporal evolution of the total energy of the molecule. A constant value of energy with time indicates that the molecule is stable when the laser field is not turned on.

Once the initial configuration of the molecule is obtained, since the system is stationary, vibrational energy is imparted to both the nucleus. By optimizing the position and momentum of the electrons for this new configuration of both the nucleus, the total energy of the system \((E_0)\) is computed. The new optimized configuration is taken as the initial condition for a field-free trajectory if \(0.006 \le (E_\mathrm{initial} - E_0) \ge 0.1 \). A field-free trajectory is then evolved in time with this initial condition. On this field-free trajectory, random points are taken for the position and momentum of the particles for the subsequent trajectories in the presence of a laser field. Such 200 field-free trajectories are run, and on each trajectory, 500 random points are chosen to generate the ensemble of \(10^5\) molecules.

One important feature of the quasi-classical Hamiltonian is that the Hamiltonian is invariant to the overall rotation of the position and momentum of all the particles, \(H({\varvec{r}}_1,{\varvec{p}}_1,{\varvec{r}}_2,{\varvec{p}}_2, {\varvec{r}}_{a},{\varvec{p}}_{a},{\varvec{r}}_{b},{\varvec{p}}_{b}) = H(\varvec{\Omega }_1 {\varvec{r}}_1,\varvec{\Omega }_1 {\varvec{r}}_2,\varvec{\Omega }_1 {\varvec{r}}_a,\varvec{\Omega }_1 {\varvec{r}}_b,\varvec{\Omega }_2 {\varvec{p}}_1,\varvec{\Omega }_2 {\varvec{p}}_2,\varvec{\Omega }_2 p_a,\varvec{\Omega }_2 {\varvec{p}}_b)\), where \(\Omega _1\) and \(\Omega _2\) are two sets of rotation matrices given by \(\begin{pmatrix} \cos \theta &{} \sin \theta \\ -\sin \theta &{} \cos \theta \\ \end{pmatrix}\), where \(\theta \) is chosen randomly from 0 to \(360^{\circ }\) for each trajectory. A random rotation matrix is applied to each trajectory before the run to generate the ensemble of randomly oriented molecules. Following this procedure, we obtained the initial ensemble of the randomly oriented molecules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, G., Tiwari, A.K. Attosecond coupled electron-nuclear dynamics of H\(_2\) molecule under intense laser fields. Eur. Phys. J. D 76, 75 (2022). https://doi.org/10.1140/epjd/s10053-022-00401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00401-x

Navigation