Skip to main content
Log in

Structural physical approximation of partial transposition makes possible to distinguish SLOCC inequivalent classes of three-qubit system

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Detection and classification of entanglement properties of a multi-qubit system is a topic of great interest. This topic has been studied extensively, and thus we found different approaches for the detection and classification of multi-qubit entangled states. We have applied partial transposition operation on one of the qubits of the three-qubit system and then studied the entanglement properties of the three-qubit system, which is under investigation. Since the partial transposition operation is not a quantum operation, we have approximated partial transposition operation in such a way that it represents a completely positive map. The approximated partial transposition operation is also known as structural physical approximation of partial transposition (SPA-PT). We have studied in detail the application of SPA-PT on a three-qubit system and provided explicitly the matrix elements of the density matrix describing SPA-PT of a three-qubit system. Moreover, we propose a criterion to classify all possible stochastic local operations and classical communication inequivalent classes of a pure as well as mixed three-qubit state through SPA-PT map, which makes our criterion experimentally realizable. We have illustrated our criterion for detection and classification of three-qubit entangled states by considering few examples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Pere, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.K. Pati, Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  4. J.W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Z.D. Li, R. Zhang, X.F. Yin, L.Z. Liu, Y. Hu, Y.Q. Fang, Y.Y. Fei, X. Jiang, J. Zhang, L. Li, N.L. Liu, F. Xu, Y.A. Chen, J.W. Pan, Nature Photon. 13, 644 (2019)

    Article  ADS  Google Scholar 

  7. O. Rudolph, Quantum Inf. Process. 4, 239 (2005)

    Article  Google Scholar 

  8. K. Chen, L.A. Wu, Phys. Lett. A 306, 14 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Chen, L.A. Wu, Quantum Inf. Comput. 3, 193 (2003)

    MathSciNet  Google Scholar 

  10. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  11. O. Guhne, G. Toth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Horoecki, A. Ekert, Phys. Rev. Lett. 89, 127902 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Bae, Rep. Prog. Phys. 80, 104001 (2017)

    Article  ADS  Google Scholar 

  16. M. Keyl, R.F. Werner, Phys. Rev. A 64, 052311 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Tanaka, Y. Ota, M. Kanazawa, G. Kimura, H. Nakazato, F. Nori, Phys. Rev. A 89, 012117 (2014)

    Article  ADS  Google Scholar 

  18. S. Adhikari, Phys. Rev. A 97, 042344 (2018)

    Article  ADS  Google Scholar 

  19. A. Kumari, S. Adhikari, Phys. Rev. A 97, 042344 (2018)

    Article  ADS  Google Scholar 

  20. R. Augusiak, J. Bae, Ł Czekaj, M. Lewenstein, J. Phys. A Math. Theor. 44, 185308 (2011)

    Article  ADS  Google Scholar 

  21. K.C. Ha, S.H. Kye, Commun. Math. Phys. 328, 131 (2014)

    Article  ADS  Google Scholar 

  22. R. Augusiak, J. Bae, J. Tura, M. Lewenstein, J. Phys. A Math. Theor. 47, 065301 (2014)

    Article  ADS  Google Scholar 

  23. M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  24. J. Tura, R. Augusiak, A.B. Sainz, T. Vértesi, M. Lewenstein, A. Acín, Science 344, 1256 (2014)

    Article  ADS  Google Scholar 

  25. R. Schmied, J.D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, N. Sangouard, Science 352, 441 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Baccari, J. Tura, M. Fadel, A. Aloy, J.D. Bancal, N. Sangouard, M. Lewenstein, A. Acín, R. Augusiak, Phys. Rev. A 100, 022121 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Datta, S. Adhikari, A. Das, P. Agrawal, Eur. Phys. J. D 72, 157 (2018)

    Article  ADS  Google Scholar 

  28. A. Acin, D. Bruss, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Ryu, S.S.B. Lee, H.S. Sim, Phys. Rev. A 86, 042324 (2012)

    Article  ADS  Google Scholar 

  30. S.H. Kye, J. Phys. A Math. Theor. 48, 235303 (2015)

    Article  ADS  Google Scholar 

  31. C. Eltschka, J. Siewert, Quant. Inf. Comput. 13, 210 (2013)

    Google Scholar 

  32. C. Eltschka, A. Osterloh, J. Siewert, A. Uhlmann, New J. Phys. 10, 043014 (2008)

    Article  ADS  Google Scholar 

  33. R. Augusiak, J. Tura, M. Lewenstein, J. Phys. A Math. Theor. 44, 212001 (2011)

    Article  ADS  Google Scholar 

  34. B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, C. Klempt, Phys. Rev. Lett. 112, 155304 (2014)

    Article  ADS  Google Scholar 

  35. J. Tura, A. Aloy, F. Baccari, A. Acín, M. Lewenstein, R. Augusiak, Phys. Rev. A 100, 032307 (2019)

    Article  ADS  Google Scholar 

  36. A. Aloy, J. Tura, F. Baccari, A. Acín, M. Lewenstein, R. Augusiak, Phys. Rev. Lett. 123, 100507 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Jung, M.R. Hwang, D. Park, Phys. Rev. A 62, 050302 (2009)

    Google Scholar 

Download references

Acknowledgements

A.K. would like to acknowledge the financial support from CSIR. This work is supported by CSIR File No. 08/133(0027)/2018-EMR-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Adhikari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Adhikari, S. Structural physical approximation of partial transposition makes possible to distinguish SLOCC inequivalent classes of three-qubit system. Eur. Phys. J. D 76, 73 (2022). https://doi.org/10.1140/epjd/s10053-022-00398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00398-3

Navigation