Skip to main content
Log in

Effects of electron beam velocity spread, temperature, and self-fields on dispersion relation and growth rate for a Cherenkov radiation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2015

Abstract

We study the effects of electron beam velocity spread, temperature, and self-fields on dispersion relation and growth rate in a Cherenkov radiation when an axial magnetic field is present. A generalized dispersion relation is derived and shown that in addition to cyclotron, FEL, and beam modes there are two other modes which are induced by thermal velocity of electron beam. For cyclotron mode, the effects of electron beam self-fields on the growth rate are investigated and shown that the growth rate in the presence of self-fields has a maximum value which is considerably greater than the saturation value of growth rate in the absence of self-fields. The optimum value of axial magnetic field at which the maximum growth can take place is determined for different electron beam densities. Then the effects of electron beam velocity spread and temperature on growth rate are studied and it is found that the electron beam temperature causes an increment in growth rate, while the velocity spread of electron beam has an opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.L. Ginzburg, Dokl Akad. Nauk SSSR 56, 253 (1947)

    Google Scholar 

  2. M. Danos, S. Geschwind, H. Lashinsky, A. van Trier, Phys. Rev. 92, 828 (1953)

    Article  ADS  Google Scholar 

  3. J. Walsh, B. Johnson, G. Dattolii, A. Renieri, Phys. Rev. Lett. 53, 779 (1984)

    Article  ADS  Google Scholar 

  4. V.K. Tripathi, C.S. Liu, IEEE Trans. Plasma Sci. 17, 583 (1989)

    Article  ADS  Google Scholar 

  5. E. Garate, R. Cook, P. Heim, R. Layman, J. Walsh, J. Appl. Phys. 58, 627 (1985)

    Article  ADS  Google Scholar 

  6. I.J. Owensand, J.H. Brownell, J. Appl. Phys. 97, 104915 (2005)

    Article  ADS  Google Scholar 

  7. W. Main, R. Cherry, E. Garate, Appl. Phys. Lett. 55, 1498 (1989)

    Article  ADS  Google Scholar 

  8. H.P. Freund, Phys. Rev. Lett. 65, 2993 (1990)

    Article  ADS  Google Scholar 

  9. E.P. Garate, C.H. Shaughnessy, J.E. Walsh, IEEE J. Quantum Electron. 23, 1627 (1987)

    Article  ADS  Google Scholar 

  10. F. Ciocci, G. Dattoli, A. Doria, G.P. Gallerano, G. Schettini, A. Torre, Phys. Rev. A 36, 207 (1987)

    Article  ADS  Google Scholar 

  11. I.J. Owens, J.H. Brownell, Phys. Rev. E 67, 036611 (2003)

    Article  ADS  Google Scholar 

  12. B. Johnson, J. Walsh, Nucl. Instrum. Methods Phys. Res. A 237, 239 (1985)

    Article  ADS  Google Scholar 

  13. D. Li, G. Huo, K. Imasak, M. Asakawa, Nucl. Instrum. Methods Phys. Res. A 606, 689 (2009)

    Article  ADS  Google Scholar 

  14. A. Bhasin, B. Bhatia, Int. J. Comput. Appl. 52, 0975 (2012)

    Google Scholar 

  15. S.C. Sharma, A. Bhasin, Phys. Plasmas 14, 053101 (2007)

    Article  ADS  Google Scholar 

  16. V.B. Asgekar, G. Dattoli, Opt. Commun. 255, 309 (2005)

    Article  ADS  Google Scholar 

  17. I. de la Fuente, P.J.M. van der Slot, K.-J. Boller, Phys. Rev. ST Accel. Beams 10, 020702 (2007)

    Article  Google Scholar 

  18. H. Fares, Nucl. Instrum. Methods Phys. Res. A 690, 111 (2012)

    Article  ADS  Google Scholar 

  19. Y. Seo, E.H. Choi, G.S. Cho, J. Phys. D 33, 654 (2000)

    Article  ADS  Google Scholar 

  20. G.S.G. Mishra, Nucl. Instrum. Methods Phys. Res. A 685, 35 (2012)

    Article  ADS  Google Scholar 

  21. G. Kheiri, M. Esmaeilzadeh, Phys. Plasmas 20, 123107 (2013)

    Article  ADS  Google Scholar 

  22. H.P. Freund, J.M. Antonsen Jr., Principles of Free-Electron Lasers (Chapman and Hall, London, 1996)

  23. M. Esmaeilzadeh, H. Mehdian, J.E. Willett, Phys. Plasmas 10, 905 (2003)

    Article  ADS  Google Scholar 

  24. F.M. Aghamir, N. Mahdizadeh, Phys. Plasmas 19, 032114 (2012)

    Article  ADS  Google Scholar 

  25. L.-B. Kong, P.-K. Liu, L. Xiao, Phys. Plasmas 14, 053108 (2007)

    Article  ADS  Google Scholar 

  26. L.-B. Kong, Z.-L. Hou, C.-R. Xie, Appl. Phys. Lett. 98, 261502 (2011)

    Article  ADS  Google Scholar 

  27. E.B. Abubakirov, V.I. Belousov, V.N. Varganov, V.A. Gintsburg, N.F. Kovalev, N.G. Kolganov, M.I. Petelin, E.I. Soluyanov, Tech. Phys. Lett. 9, 533 (1983)

    Google Scholar 

  28. A.V. Savilov, Phys. Plasmas 16, 063103 (2009)

    Article  ADS  Google Scholar 

  29. V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, P.S. Strelkov, M.I. Petelin, Int. J. Electron. 51, 541 (1981)

    Article  Google Scholar 

  30. M. Esmaeilzadeh, H. Mehdian, J.E. Willett, Phys. Rev. E 65, 016501 (2001)

    Article  ADS  Google Scholar 

  31. P. Jha, P. Kumar, Phys. Rev. E 57, 2256 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golshad Kheiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheiri, G., Esmaeilzadeh, M. Effects of electron beam velocity spread, temperature, and self-fields on dispersion relation and growth rate for a Cherenkov radiation. Eur. Phys. J. D 69, 29 (2015). https://doi.org/10.1140/epjd/e2014-50626-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50626-0

Keywords

Navigation