Skip to main content
Log in

Magnetic properties and temperature variation of spectra in the Hubbard model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the two-dimensional fermionic Hubbard model, temperature and concentration dependencies of the uniform magnetic susceptibility and squared site spin, the variation of the double occupancy with the repulsion and the temperature dependence of the spin structure factor are calculated using the strong coupling diagram technique. In these calculations, a correction parameter is introduced into the irreducible vertex to fulfill the Mermin-Wagner theorem and to attain low temperatures. Satisfactory agreement of the obtained results with data of Monte Carlo simulations, numerical linked-cluster expansions and experiments in optical lattices lends support to the validity of such a correction. The ability to attain low temperatures allows us to investigate spectral functions in this region. At half-filling, for small and large Hubbard repulsions no qualitative changes are observed in comparison with somewhat higher temperatures reached in the previous work. However, on cooling, there appears a new feature for moderate repulsions – a narrow band emerges near the Fermi level, which produces a pronounced peak in the density of states. By its location and bandwidth, the feature is identified with the spin-polaron band.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985)

    Article  ADS  Google Scholar 

  2. A. Moreo, Phys. Rev. B 48, 3380 (1993)

    Article  ADS  Google Scholar 

  3. C. Gröber, R. Eder, W. Hanke, Phys. Rev. B 62, 4336 (2000)

    Article  ADS  Google Scholar 

  4. H.Q. Lin, J.E. Hirsch, D.J. Scalapino, Phys. Rev. B 37, 7359 (1988)

    Article  ADS  Google Scholar 

  5. E. Dagotto, F. Ortolani, D. Scalapino, Phys. Rev. B 46, 3183 (1992)

    Article  ADS  Google Scholar 

  6. M. Ebrahimkhas, Phys. Lett. A 375, 3223 (2011)

    Article  ADS  Google Scholar 

  7. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  8. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  9. H. Park, K. Haule, G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008)

    Article  ADS  Google Scholar 

  10. T. Sato, H. Tsunetsugu, Phys. Rev. B 94, 079907 (2016)

    Article  ADS  Google Scholar 

  11. S. Moukouri, M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001)

    Article  ADS  Google Scholar 

  12. J. Merino, O. Gunnarsson, Phys. Rev. B 89, 245130 (2014)

    Article  ADS  Google Scholar 

  13. A. Toschi, A.A. Katanin, K. Held, Phys. Rev. B 75, 045118 (2007)

    Article  ADS  Google Scholar 

  14. T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K. Held, N. Blümer, M. Aichhorn, A. Toschi, Phys. Rev. B 91, 125109 (2015)

    Article  ADS  Google Scholar 

  15. G. Rohringer, H. Hafermann, A. Toschi, A.A. Katanin, A.E. Antipov, M.I. Katsnelson, A.I. Lichtenstein, A.N. Rubtsov, K. Held, Rev. Mod. Phys. 90, 025003 (2018)

    Article  ADS  Google Scholar 

  16. A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 033101 (2008)

    Article  ADS  Google Scholar 

  17. H. Hafermann, G. Li, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, H. Monien, Phys. Rev. Lett. 102, 206401 (2009)

    Article  ADS  Google Scholar 

  18. D. Sénéchal, D. Perez, M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000)

    Article  ADS  Google Scholar 

  19. D. Sénéchal, A.-M.S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004)

    Article  ADS  Google Scholar 

  20. M. Kohno, Phys. Rev. Lett. 108, 076401 (2012)

    Article  ADS  Google Scholar 

  21. M. Potthoff, M. Aichhorn, C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

    Article  ADS  Google Scholar 

  22. E. Arrigoni, M. Aichhorn, M. Daghofer, W. Hanke, New J. Phys. 11, 055066 (2009)

    Article  ADS  Google Scholar 

  23. J.P.L. Faye, D. Sénéchal, Phys. Rev. B 95, 115127 (2017)

    Article  ADS  Google Scholar 

  24. R.O. Zaitsev, Sov. Phys. JETP 43, 574 (1976)

    ADS  Google Scholar 

  25. Yu.A. Izyumov, Yu.N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems (Consultants Bureau, New York, 1988)

  26. Yu.A. Izyumov, B.M. Letfulov, J. Phys.: Condens. Matter 1, 8905 (1990)

    ADS  Google Scholar 

  27. S.G. Ovchinnikov, V.V. Valkov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004)

  28. Y.M. Vilk, A.-M.S. Tremblay, J. Phys. I France 7, 1309 (1997)

    Article  Google Scholar 

  29. E. Khatami, M. Rigol, Phys. Rev. A 84, 053611 (2011)

    Article  ADS  Google Scholar 

  30. B. Tang, E. Khatami, M. Rigol, Comput. Phys. Commun. 184, 557 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Jaklič, P. Prelovšek, Phys. Rev. B 49, 5065 (1994)

    Article  ADS  Google Scholar 

  32. J. Bonča, P. Prelovšek, Phys. Rev. B 67, 085103 (2003)

    Article  ADS  Google Scholar 

  33. M.I. Vladimir, V.A. Moskalenko, Theor. Math. Phys. 82, 301 (1990)

    Article  Google Scholar 

  34. W. Metzner, Phys. Rev. B 43, 8549 (1991)

    Article  ADS  Google Scholar 

  35. S. Pairault, D. Sénéchal, A.-M.S. Tremblay, Eur. Phys. J.B 16, 85 (2000)

    Article  ADS  Google Scholar 

  36. A. Sherman, Phys. Rev. B 73, 155105 (2006)

    Article  ADS  Google Scholar 

  37. A. Sherman, Physica B 456, 35 (2015)

    Article  ADS  Google Scholar 

  38. A. Sherman, J. Phys.: Condens. Matter 30, 195601 (2018)

    ADS  Google Scholar 

  39. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  40. J.C. Slater, Phys. Rev. 82, 538 (1951)

    Article  ADS  Google Scholar 

  41. S. Schmitt-Rink, C.M. Varma, A.E. Ruckenstein, Phys. Rev. Lett. 60, 2793 (1988)

    Article  ADS  Google Scholar 

  42. A. Ramšak, P. Horsch, Phys. Rev. B 48, 10559 (1993)

    Article  ADS  Google Scholar 

  43. A. Sherman, M. Schreiber, Phys. Rev. B 50, 12887 (1994)

    Article  ADS  Google Scholar 

  44. J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  45. J. Hubbard, Proc. R. Soc. Lond. A 277, 237 (1964)

    Article  ADS  Google Scholar 

  46. A. Sherman, Eur. Phys. J. B 89, 91 (2016)

    Article  ADS  Google Scholar 

  47. A. Sherman, Eur. Phys. J. B 90, 120 (2017)

    Article  ADS  Google Scholar 

  48. A. Sherman, M. Schreiber, Phys. Rev. B 76, 245112 (2007)

    Article  ADS  Google Scholar 

  49. A. Sherman, M. Schreiber, Phys. Rev. B 77, 155117 (2008)

    Article  ADS  Google Scholar 

  50. A.A. Katanin, A. Toschi, K. Held, Phys. Rev. B 80, 075104 (2009)

    Article  ADS  Google Scholar 

  51. G. Rohringer, A. Toschi, Phys. Rev. B 94, 125144 (2016)

    Article  ADS  Google Scholar 

  52. N.E. Bickers, S.R. White, Phys. Rev. B 43, 8044 (1991)

    Article  ADS  Google Scholar 

  53. J.E. Hirsch, Phys. Rev. Lett. 51, 1900 (1983)

    Article  ADS  Google Scholar 

  54. Y. Okabe, M. Kikuchi, J. Phys. Soc. Jpn. 57, 4351 (1988)

    Article  ADS  Google Scholar 

  55. L. Gang, L. Hunpyo, H. Monien, Phys. Rev. B 78, 195105 (2008)

    Article  Google Scholar 

  56. E.G.C.P. van Loon, H. Hafermann, M. Katsnelson, Phys. Rev. B 97, 085125 (2018)

    Article  ADS  Google Scholar 

  57. O.K. Kalashnikov, E.S. Fradkin, Phys. Stat. Solidi B 59, 9 (1973)

    Article  ADS  Google Scholar 

  58. S.R. White, Phys. Rev. B 44, 4670 (1991)

    Article  ADS  Google Scholar 

  59. A. Moreo, D.J. Scalapino, R.L. Sugar, S.R. White, N.E. Bickers, Phys. Rev. B 41, 2313 (1990)

    Article  ADS  Google Scholar 

  60. J.P.F. LeBlanc et al., Phys. Rev X 5, 041041 (2015)

    Google Scholar 

  61. C.N. Varney, C.-R. Lee, Z.J. Bai, S. Chiesa, M. Jarrel, R.T. Scalettar, Phys. Rev. B 80, 075116 (2009)

    Article  ADS  Google Scholar 

  62. J.H. Drewes, L.A. Miller, E. Cocchi, C.F. Chan, N. Wurz, M. Gall, D. Pertot, F. Brennecke, M. Köhl, Phys. Rev. Lett. 118, 170401 (2017)

    Article  ADS  Google Scholar 

  63. T. Paiva, R. Scalettar, M. Randeria, N. Trivedi, Phys. Rev. Lett. 104, 066406 (2010)

    Article  ADS  Google Scholar 

  64. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1995), Chap. 18

  65. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  66. S. Habershon, B.J. Braams, D.E. Manolopoulos, J. Chem. Phys. 127, 174108 (2007)

    Article  ADS  Google Scholar 

  67. F. Ronning, K.M. Shen, N.P. Armitage, A. Damascelli, D.H. Lu, Z.-X. Shen, L.L. Miller, C. Kim, Phys. Rev. B 71, 094518 (2005)

    Article  ADS  Google Scholar 

  68. J. Graf, G.-H. Gweon, K. McElroy, S.Y. Zhou, C. Jozwiak, E. Rotenberg, A. Bill, T. Sasagawa, H. Eisaki, S. Uchida, H. Takagi, D.-H. Lee, A. Lanzara, Phys. Rev. Lett. 98, 067004 (2007)

    Article  ADS  Google Scholar 

  69. T. Valla, T.E. Kidd, W.-G. Yin, G.D. Gu, P.D. Johnson, Z.-H. Pan, A.V. Fedorov, Phys. Rev. Lett. 98, 167003 (2007)

    Article  ADS  Google Scholar 

  70. M. Balzer, B. Kyung, D. Sénéchal, A.-M.S. Tremblay, M. Potthoff, Europhys. Lett. 85, 17002 (2009)

    Article  ADS  Google Scholar 

  71. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

  72. N. Bulut, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 72, 705 (1994)

    Article  ADS  Google Scholar 

  73. M.U. Luchini, D.M. Edwards, J. Low Temp. Phys. 99, 305 (1995)

    Google Scholar 

  74. B. Kyung, Phys. Rev. B 58, 16032 (1998)

    Article  ADS  Google Scholar 

  75. Yu.A. Izyumov, Yu.N. Skryabin, Basic Models in the Quantum Theory of Magnetism (Institute of Metal Physics, Yekaterinburg, 2002)

  76. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Sherman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, A. Magnetic properties and temperature variation of spectra in the Hubbard model. Eur. Phys. J. B 92, 55 (2019). https://doi.org/10.1140/epjb/e2019-90531-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90531-2

Keywords

Navigation