Skip to main content
Log in

Microscopic analysis of dipole electric and magnetic strengths in \(^{156}\)Gd

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The dipole electric (E1) and magnetic (M1) strengths in strongly deformed \(^{156}\)Gd are investigated within a fully self-consistent Quasiparticle Random Phase Approximation (QRPA) with Skyrme forces SVbas, SLy6 and SG2. We inspect, on the same theoretical footing, low-lying dipole states and the isovector giant dipole resonance in E1 channel and the orbital scissors resonance as well as the spin-flip giant resonance (SFGR) in M1 channel. Besides, E1 toroidal mode and low-energy spin-flip M1 excitations are considered. The deformation splitting and dipole-octupole coupling of electric excitations are analyzed. The origin of SFGR gross structure, impact of the residual interaction and interference of orbital and spin contributions to SFGR are discussed. The effect of the central exchange \({\textbf {J}}^2\)-term from the Skyrme functional is demonstrated. The calculations show a satisfactory agreement with available experimental data, except for the recent NRF measurements of M. Tamkas et al for M1 strength at 4–6 MeV, where, in contradiction with our calculations and previous \((p,p')\) data, almost no M1 strength was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The additional calculated data can be available on a reasonable request.]

References

  1. M.N. Harakeh, A. van der Woude, Giant Resonances (Clarendon Press, Oxford, 2001)

    Google Scholar 

  2. N. Paar, D. Vretenar, E. Khan, G. Colò, Rep. Prog. Phys. 70, 691 (2007)

    ADS  CAS  Google Scholar 

  3. K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010)

    ADS  CAS  Google Scholar 

  4. D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)

    ADS  Google Scholar 

  5. A. Bracco, E.G. Lanza, A. Tamii, Prog. Particle Nucl. Phys. 106, 360 (2019)

    ADS  CAS  Google Scholar 

  6. P. Klupfel, P.-G. Reinhard, T.J. Burvenich, J.A. Maruhn, Phys. Rev. C 79, 034310 (2009)

    ADS  Google Scholar 

  7. W. Kleinig, V.O. Nesterenko, J. Kvasil, P.-G. Reinhard, P. Vesely, Phys. Rev. C 78, 044313 (2008)

    ADS  Google Scholar 

  8. N. Lo Iudice, F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978)

    ADS  CAS  Google Scholar 

  9. D. Bohle, A. Richter, W. Steffen, A. Diepernik, N. Lo Iudice, F. Palumbo, O. Scholten, Phys. Lett. B 137, 27 (1984)

    ADS  Google Scholar 

  10. N. Pietralla, P. von Brentano, A.F. Lisetskiy, Prog. Particle Nucl. Phys. 60, 225 (2008)

    ADS  CAS  Google Scholar 

  11. L.-G. Cao, G. Colò, H. Sagawa, P.F. Bortignon, L. Sciacchitano, Phys. Rev. C 80, 064304 (2009)

    ADS  Google Scholar 

  12. P. Vesely, J. Kvasil, V.O. Nesterenko, W. Kleinig, P.-G. Reinhard, V.Yu. Ponomarev, Phys. Rev. C 80, 031302 (2009)

  13. V.O. Nesterenko, J. Kvasil, P. Vesely, W. Kleinig, P.-G. Reinhard, V.Yu. Ponomarev, J. Phys. G Nucl. Particle Phys. 37, 064034 (2010)

  14. S. Goriely, S. Hilaire, S. Péru, M. Martini, I. Deloncle, F. Lechaftois, Phys. Rev. C 94, 044306 (2016)

    ADS  Google Scholar 

  15. V. Tselyaev, N. Lyutorovich, J. Speth, P.-G. Reinhard, D. Smirnov, Phys. Rev. C 99, 064329 (2019)

    ADS  CAS  Google Scholar 

  16. G. Kružić, T. Oishi, D. Vale, N. Paar, Phys. Rev. C 102, 044315 (2020)

    ADS  Google Scholar 

  17. F. Mercier, J.-P. Ebran, E. Khan, Phys. Rev. C 107, 034309 (2023)

    ADS  CAS  Google Scholar 

  18. V.O. Nesterenko, J. Kvasil, A. Repko, W. Kleinig, P.-G. Reinhard, Phys. Atom. Nuclei 79, 842 (2016)

    ADS  CAS  Google Scholar 

  19. J. Kvasil, V.O. Nesterenko, W. Kleinig, P.-G. Reinhard, P. Vesely, Phys. Rev. C 84, 034303 (2011)

    ADS  Google Scholar 

  20. A. Repko, P.-G. Reinhard, V.O. Nesterenko, J. Kvasil, Phys. Rev. C 87, 024305 (2013)

    ADS  Google Scholar 

  21. A. Repko, J. Kvasil, V.O. Nesterenko, P.-G. Reinhard, Eur. Phys. J. A 53, 221 (2017)

    ADS  Google Scholar 

  22. A. Repko, V.O. Nesterenko, J. Kvasil, P.-G. Reinhard, Eur. Phys. J. A 55, 242 (2019)

    ADS  CAS  Google Scholar 

  23. V.O. Nesterenko, A. Repko, J. Kvasil, P.-G. Reinhard, Phys. Rev. C 100, 064302 (2019)

    ADS  CAS  Google Scholar 

  24. E.B. Balbutsev, I.V. Molodtsova, P. Schuck, Phys. Rev. C 97, 044316 (2018)

    ADS  CAS  Google Scholar 

  25. E.B. Balbutsev, I.V. Molodtsova, P. Schuck, Phys. Atom. Nucl. 83, 212 (2020)

    ADS  CAS  Google Scholar 

  26. V.O. Nesterenko, P.I. Vishnevskiy, J. Kvasil, A. Repko, W. Kleinig, Phys. Rev. C 103, 064313 (2021)

    ADS  CAS  Google Scholar 

  27. V.O. Nesterenko, P.I. Vishnevskiy, A. Repko, J. Kvasil, Phys. Atom. Nuclei 85, 858 (2022)

    ADS  CAS  Google Scholar 

  28. G.M. Gurevich, L.E. Lazareva, V.M. Mazur, S.Yu. Merkulov, G.V. Solodukhov, V.A. Tyutin, Nucl. Phys. A 351, 257 (1981)

  29. H.H. Pitz, U.E.P. Berg, R.D. Heil, U. Kneissl, R. Stock, C. Wesselborg, P. von Brentano, Nucl. Phys. A 492, 411 (1989)

    ADS  Google Scholar 

  30. A. Richter, Nucl. Phys. A 507, 99c (1990)

    ADS  Google Scholar 

  31. A. Richter, Prog. Particle Nucl. Phys. 34, 261 (1995)

    ADS  CAS  Google Scholar 

  32. H.J. Wörtche, Ph.D. thesis, Technischen Hochschule Darmstadt, Germany (1994)

  33. M. Tamkas, E. Aciksoz, J. Issak, T. Beck, N. Benouaret, M. Bhike, I. Boztosun, A. Durusoy, U. Gayer, Krishichayan, B. Loher, N. Pietralla, D. Savran, W. Tornow, V. Werner, A. Zilges, M. Zweidinger, Nucl. Phys. A 987, 79 (2019)

    ADS  CAS  Google Scholar 

  34. R. Nojarov, A. Faessler, Z. Phys. A Atom. Nuclei 336, 151 (1990)

    ADS  CAS  Google Scholar 

  35. P. Sarriguren, E. Moya de Guerra, R. Nojarov, Phys. Rev. C 54, 690 (1996)

    ADS  CAS  Google Scholar 

  36. E. Guliyev, H. Quliyev, A.A. Kuliev, J. Phys. G Nucl. Part. Phys. 47, 115107 (2020)

    ADS  CAS  Google Scholar 

  37. V.G. Soloviev, A.V. Sushkov, N.Yu. Shirikova, N. Lo Iudice, Nucl. Phys. A 600, 155 (1996)

  38. V.G. Soloviev, A.V. Sushkov, N.Yu. Shirikova, Phys. Part. Nucl. 31(4), 385 (2000)

  39. H. Sasaki, T. Kawano, I. Stetcu, Phys. Rev. C 107, 054312 (2023)

    ADS  CAS  Google Scholar 

  40. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)

    ADS  Google Scholar 

  41. A. Repko, J. Kvasil, V.O. Nesterenko, P.-G. Reinhard, arxiv:1510.01248 (nucl-th)

  42. A. Repko, Ph.D. thesis, Charles University, Prague (2015). arXiv:1603.04383 (nucl-th)

  43. A. Repko, J. Kvasil, V.O. Nesterenko, Phys. Rev. C 99, 044307 (2019)

    ADS  CAS  Google Scholar 

  44. J. Kvasil, A. Repko, V.O. Nesterenko, Eur. Phys. J. A 55, 213 (2019)

    ADS  CAS  Google Scholar 

  45. L.M. Donaldson, J. Carter, P. von Neumann-Cosel, V.O. Nesterenko, R. Neveling, P.-G. Reinhard, I.T. Usman, P. Adsley, C.A. Bertulani, J.W. Brümmer, E.Z. Buthelezi, G.R.J. Cooper, R.W. Fearick, S.V. Förtsch, H. Fujita, Y. Fujita, M. Jingo, N.Y. Kheswa, W. Kleinig, C.O. Kureba, J. Kvasil, M. Latif, K.C.W. Li, J.P. Mira, F. Nemulodi, P. Papka, L. Pellegri, N. Pietralla, V.Yu. Ponomarev, B. Rebeiro, A. Richter, N.Yu. Shirikova, E. Sideras-Haddad, A.V. Sushkov, F.D. Smit, G.F. Steyn, J.A. Swartz, A. Tamii, Phys. Rev. C 102, 064327 (2020)

  46. H. Pai, T. Beck, J. Beller, R. Beyer, M. Bhike, V. Derya, U. Gayer, J. Isaak, Krishichayan, J. Kvasil, B. Lȯher, V.O. Nesterenko, N. Pietralla, G. Martínez-Pinedo, L. Mertes, V.Yu. Ponomarev, P.-G. Reinhard, A. Repko, P.C. Ries, C. Romig, D. Savran, R. Schwengner, W. Tornow, V. Werner, A. Zilges, M. Zweidinger, Phys. Rev. C 93, 014318 (2016)

  47. J. Speth, P.-G. Reinhard, V. Tselyaev, N. Lyutorovich, Phys. Rev. C 102, 054332 (2020)

    ADS  CAS  Google Scholar 

  48. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    ADS  CAS  Google Scholar 

  49. J.R. Stone, P.-G. Reinhard, Prog. Particle Nucl. Phys. 58, 587 (2007)

    ADS  CAS  Google Scholar 

  50. N. Van Giai, H. Sagawa, Phys. Lett. B 106, 379 (1981)

    ADS  Google Scholar 

  51. V.O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.-G. Reinhard, Int. J. Mod. Phys. E 17, 89 (2008)

    ADS  CAS  Google Scholar 

  52. A.B. Migdal, Theory of Finite Fermi Systems and Application to Atomic Nuclei (Wiley, New York, 1967)

    Google Scholar 

  53. L.D. Landau, E.M. Lifshitz, L.P. Pitajevski, Course of Theoretical Physics 9—Statistical Physics (Pergamon, Oxford, 1980)

    Google Scholar 

  54. G. Colò, H. Sagawa, S. Fracasso, P.F. Bortignon, Phys. Lett. B 646, 227 (2007)

    ADS  Google Scholar 

  55. T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007)

    ADS  Google Scholar 

  56. M. Bender, K. Bennaceur, T. Duguet, P.-H. Heenen, T. Lesinski, J. Meyer, Phys. Rev. C 80, 064302 (2009)

    ADS  Google Scholar 

  57. W. Satula, M. Zalewski, J. Dobaczewski, P. Olbratowski, M. Rafalski, T.R. Werner, R.A. Wyss, Int. J. Mod. Phys. E 18, 808 (2009)

    ADS  CAS  Google Scholar 

  58. P.-G. Reinhard, B. Schuetrumpf, J.A. Maruhn, Comput. Phys. Commun. 258, 107603 (2021)

    CAS  Google Scholar 

  59. Database. http://www.nndc.bnl.gov/nudat2/chartNuc.jsp

  60. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000)

    ADS  CAS  Google Scholar 

  61. P.-G. Reinhard, private communication

  62. D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962)

    CAS  Google Scholar 

  63. J. Kvasil, A. Repko, V.O. Nesterenko, W. Kleinig, P.-G. Reinhard, Int. J. Mod. Phys. E 21, 1250041 (2012)

    ADS  Google Scholar 

  64. J. Kvasil, V.O. Nesterenko, W. Kleinig, P.-G. Reinhard, Phys. Scr. 89, 054023 (2014)

    ADS  CAS  Google Scholar 

  65. V.O. Nesterenko, A. Repko, J. Kvasil, P.-G. Reinhard, Phys. Rev. Lett. 120, 182501 (2018)

    ADS  CAS  PubMed  Google Scholar 

  66. K. Yoshida, T. Nakatsukasa, Phys. Rev. C 88, 034309 (2013)

    ADS  Google Scholar 

  67. P. Adsley, V.O. Nesterenko, M. Kimura, L.M. Donaldson, R. Neveling, J.W. Brümmer, D.G. Jenkins, N.Y. Kheswa, J. Kvasil, K.C.W. Li, D.J. Marín-Lámbarri, Z. Mabika, P. Papka, L. Pellegri, V. Pesudo, B. Rebeiro, P.-G. Reinhard, F.D. Smit, W. Yahia-Cherif, Phys. Rev. C 103, 044315 (2021)

  68. H.H. Pitz, R.D. Heil, U. Kneissl, S. Lindenstruth, U. Seemann, R. Stock, C. Wesselborg, A. Zilges, P. von Brentano, S.D. Hoblit, A.M. Nathan, Nucl. Phys. A 509, 587 (1990)

    ADS  Google Scholar 

  69. J. Enders, P. von Neumann-Cosel, C. Rangacharyulu, A. Richter, Phys. Rev C 71, 014306 (2005)

    ADS  Google Scholar 

  70. J.M. Moss, D.H. Youngblood, C.M. Rozsa, D.R. Brown, J.D. Bronson, Phys. Rev. Lett. 37, 816 (1976)

    ADS  CAS  Google Scholar 

  71. L.A. Malov, V.O. Nesterenko, V.G. Soloviev, J. Phys. G Nucl. Phys. 3, L219 (1977)

    ADS  CAS  Google Scholar 

  72. F.E. Serr, T.S. Dumitrescu, T. Suzuki, C.H. Dasso, Nucl. Phys. A 404, 359 (1983)

    ADS  Google Scholar 

  73. P. Bonche, H. Flocard, P.H. Heenen, Nucl. Phys. A 467, 115 (1987)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Tamkas for presentation of NRS experimental data. J.K. appreciates the support by a grant of the Czech Science Agency, Project No. 19-14048 S. A. R. acknowledges support by the Slovak Research and Development Agency under Contract No. APVV-20-0532 and by the Slovak grant agency VEGA (Contract No. 2/0067/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Nesterenko.

Additional information

Communicated by Denis Lacroix.

Appendix A: Skyrme functional

Appendix A: Skyrme functional

The Skyrme functional has the form [12, 48, 49]

$$\begin{aligned} \mathcal {H}_\textrm{Sk}= & {} \frac{b_0}{2} \rho ^2- \frac{b'_0}{2} \sum \rho _{q}^2 + \frac{b_3}{3} \rho ^{\alpha +2} - \frac{b'_3}{3} \rho ^{\alpha } \sum \rho ^2_q \nonumber \\{} & {} +b_1 (\rho \tau - {\textbf {j}}^{\;2}) - b'_1 \sum (\rho _q \tau _q - {\textbf {j}}^{\;2}_q) \nonumber \\{} & {} - \frac{b_2}{2} \rho \Delta \rho + \frac{b'_2}{2} \sum \rho _q \Delta \rho _q \nonumber \\{} & {} - b_4 (\rho \nabla \cdot {\textbf {J}}\!+\!(\nabla \!\times \!{\textbf {j}}) \!\cdot \! {\textbf {s}}) \nonumber \\{} & {} - b'_4 \sum (\rho _q \nabla \cdot {\textbf {J}}_q\! +\!(\nabla \!\times \!{\textbf {j}}_q) \!\cdot \! {\textbf {s}}_q) \nonumber \\{} & {} + \frac{\tilde{b}_0}{2} {\textbf {s}}^{\;2} - \frac{\tilde{b}'_0}{2} \sum {\textbf {s}}_{q}^{\;2} + \frac{\tilde{b}_3}{3} \rho ^{\alpha } {\textbf {s}}^{\;2} - \frac{\tilde{b}'_3}{3} \rho ^{\alpha } \sum {\textbf {s}}^{\;2}_q \nonumber \\{} & {} -\frac{\tilde{b}_2}{2} {\textbf {s}} \!\cdot \! \Delta {\textbf {s}} + \frac{\tilde{b}'_2}{2} \sum {\textbf {s}}_q \!\cdot \!\Delta {\textbf {s}}_q \nonumber \\{} & {} + \tilde{b}_1 ({\textbf {s}}\!\cdot \!{\textbf {T}}\!-\!{\textbf {J}}^{2}) + \tilde{b}'_1 \sum ({\textbf {s}}_q\!\cdot \!{\textbf {T}}_q \!-\!{\textbf {J}}_q^{2}). \end{aligned}$$
(11)

Here \(b_i\), \(b'_i\), \(\tilde{b}_i\), \(\tilde{b}'_i\) are the force parameters. The relation of these parameters with standard ones can be found in Refs. [12, 48, 49, 73]. Functional (11) includes time-even (nucleon \(\rho _q\), kinetic-energy \(\tau _q\), spin-orbit \({\textbf {J}}_q\)) and time-odd (current \({\textbf {j}}_{ q}\), spin \({\textbf {s}}_q\), spin kinetic-energy \({\textbf {T}}_q\)) densities. The label \(q\in \{p,n\}\) q denotes protons and neutrons. Densities without index q, like \(\rho = \rho _p + \rho _n\), denote total densities. The contributions with \(b_i\) (i = 0, 1, 2, 3, 4) and \(b'_i\) (i = 0, 1, 2, 3) are the standard terms responsible for ground state properties and electric excitations of even-even nuclei [48]. The isovector spin-orbit interaction is usually linked to the isoscalar one by \(b'_4=b_4\). The terms with \(\tilde{b}_i,\tilde{b}'_i\) (i = 0, 1, 2, 3) represent the spin–isospin channel important for odd nuclei and magnetic modes in even-even nuclei. The last line of (11) includes tensor spin-orbit terms \(\propto \tilde{b}_1,\tilde{b}'_1\) which can affect both mean-field ground-state properties and magnetic modes. In general, these terms embrace contributions from both central-exchange interaction and non-central tensor interaction [54,55,56]. In our calculations, \({\textbf {J}}^2\) is taken into account only for SG2 and only with central exchange contribution. In this case, \(\tilde{b}_i\) and \(\tilde{b}'_i\) are fully expressed through the standard Skyrme parameters \(t_1, t_2, x_1, x_2\) (see Eqs. (23)–(24) below) and have the values \({\tilde{b}}_1\)= \(-\) 40.1, \({\tilde{b}}'_1\) = \(-\) 47.8.

The parameters \(b_i\), \(b'_i\), \(\tilde{b}_i\), \(\tilde{b}'_i\) are related with standard Skyrme parameters as [12, 48, 49, 73].

$$\begin{aligned} b_0= & {} t_0\left( 1 + \frac{1}{2} x_0\right) , \end{aligned}$$
(12)
$$\begin{aligned} b'_0= & {} t_0\left( \frac{1}{2} + x_0\right) , \end{aligned}$$
(13)
$$\begin{aligned} b_1= & {} \frac{1}{4}\left[ t_1\left( 1 + \frac{1}{2}x_1\right) + t_2\left( 1 + \frac{1}{2}x_2\right) \right] , \end{aligned}$$
(14)
$$\begin{aligned} b'_1= & {} \frac{1}{4}\left[ t_1\left( \frac{1}{2} + x_1\right) - t_2\left( \frac{1}{2} + x_2\right) \right] , \end{aligned}$$
(15)
$$\begin{aligned} b_2= & {} \frac{1}{8}\left[ 3t_1\left( 1 + \frac{1}{2}x_1\right) - t_2\left( 1 + \frac{1}{2}x_2\right) \right] , \end{aligned}$$
(16)
$$\begin{aligned} b'_2= & {} \frac{1}{8}\left[ 3t_1\left( \frac{1}{2} + x_1\right) + t_2\left( \frac{1}{2} + x_2\right) \right] , \end{aligned}$$
(17)
$$\begin{aligned} b_3= & {} \frac{1}{4}t_3\left( 1 + \frac{1}{2} x_3\right) , \end{aligned}$$
(18)
$$\begin{aligned} b'_3= & {} \frac{1}{4}t_3\left( \frac{1}{2} + x_3 \right) , \end{aligned}$$
(19)
$$\begin{aligned} b_4= & {} b'_4=\frac{1}{2}t_4, \end{aligned}$$
(20)
$$\begin{aligned} {\tilde{b}}_0= & {} \frac{1}{2} t_0x_0, \end{aligned}$$
(21)
$$\begin{aligned} {\tilde{b}}'_0= & {} \frac{1}{2} t_0 \end{aligned}$$
(22)
$$\begin{aligned} {\tilde{b}}_1= & {} \frac{1}{8}(t_1x_1 + t_2x_2), \end{aligned}$$
(23)
$$\begin{aligned} \tilde{b}'_1= & {} -\frac{1}{8}(t_1 - t_2), \end{aligned}$$
(24)
$$\begin{aligned} {\tilde{b}}_2= & {} \frac{1}{16}(3t_1x_1 - t_2x_2), \end{aligned}$$
(25)
$$\begin{aligned} \tilde{b}'_2= & {} \frac{1}{16}(3t_1 + t_2), \end{aligned}$$
(26)
$$\begin{aligned} {\tilde{b}}_3= & {} \frac{1}{8} t_3x_3, \end{aligned}$$
(27)
$$\begin{aligned} {\tilde{b}}'_3= & {} \frac{1}{8} t_3. \end{aligned}$$
(28)

As seen from Table 8, Skyrme parameters \(t_1, t_2, x_1, x_2\), entering \({\textbf {J}}^2\) parameters \({\tilde{b}}_1\) and \({\tilde{b}}'_1\), are rather different for SVbas, SLy6 and SG2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterenko, V.O., Vishnevskiy, P.I., Reinhard, PG. et al. Microscopic analysis of dipole electric and magnetic strengths in \(^{156}\)Gd. Eur. Phys. J. A 60, 28 (2024). https://doi.org/10.1140/epja/s10050-024-01251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01251-4

Navigation