Skip to main content
Log in

Examination of gamma radiation from \(\mathrm{^{10}B(p,\gamma )^{11}C}\) reaction at low energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this study, we have conducted an assessment of direct capture cross sections, astrophysical S-factors, phase shifts, and their derivatives at low energies within the framework of the potential model. We present the first investigation of the \(\mathrm{^{10}B(p,\gamma )^{11}C}\) reaction’s cross sections and astrophysical S-factors using the Woods–Saxon potential. The \(\mathrm{^{10}B(p,\gamma )^{11}C}\) reaction plays a key role in the production of carbon-11 in stars, providing insights into stellar evolution and the synthesis of elements in the universe. Our analysis focuses on the astrophysical S-factor for the electric dipole (E1) transition within the energy range of 0–500 keV. The chosen parametrization reproduces the available experimental and theoretical data for cross sections and astrophysical S-factors in this reaction accurately. Furthermore, we have extrapolated the S-factor values to zero energy (S(0)) for the \((5/2)^+\) to \((3/2)^-\), \((5/2)^-\) and \((7/2)^-\) energy levels. The calculated S(0) values are found to be 9.25 keV barn, 9.37 keV barn, and 8.54 keV barn, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is numerical study and no experimental method.]

References

  1. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998)

    Article  CAS  ADS  Google Scholar 

  2. W. Beenakker et al., (1999). arXiv:astro-ph/9906298

  3. A. Kafkarkou et al., Phys. Rev. C 89, 014601 (2014)

    Article  ADS  Google Scholar 

  4. A.P. Tonchev et al., Phys. Rev. C 68, 045803 (2003)

    Article  ADS  Google Scholar 

  5. W.H. Chung, G.B. Chadwick et al., Can. J. Phys. 34, 1 (1956)

  6. M. Wiescher et al., Phys. Rev. C 28, 1431 (1983)

    Article  CAS  ADS  Google Scholar 

  7. E. Padilla et al., Phys. Rev. Lett. 94, 122501 (2005)

    Article  ADS  Google Scholar 

  8. J.M. Allmond et al., Phys. Rev. C 90, 034309 (2014)

    Article  ADS  Google Scholar 

  9. H. Khalili et al., New Astron. 86, 101572 (2021)

    Article  CAS  Google Scholar 

  10. S. Dubovichenko et al., Int. J. Mod. Phys. E 26, 1630009 (2017)

  11. C.A. Bertulani, CPC 123 (2003)

  12. Y. Xu et al., Nucl. Phys. A. 918, 61 (2013)

    Article  CAS  ADS  Google Scholar 

  13. M. Born, Nature 486, 509 (2012)

    Article  Google Scholar 

  14. J. Fox et al., PRC. 71, 055801 (2012)

    Article  ADS  Google Scholar 

  15. C. Rolfs, R.E. Azuma, Nucl. Phys. A 227, 291 (1974)

    Article  CAS  ADS  Google Scholar 

  16. E. Yildiz et al., EPJ Web Conf. 128, 1010 (2015)

    Article  Google Scholar 

  17. J.T. Huang et al., ADNDT. 847, 96824 (2010)

    Google Scholar 

  18. P.J. Brussaard, P.W.M. Glaudemans, Shell Model Applications in Nuclear Spectroscopy (North Holland, Amsterdam, 1977)

    Google Scholar 

  19. W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Ann. Rev. Astron. Astrophys. 5, 525 (1967)

    Article  CAS  ADS  Google Scholar 

  20. C.E. Rolls, W.S. Rodney, Cauldrons in the Cosmos (Chicago University, Chicago, 1988)

    Google Scholar 

  21. R.G. Breit, E.P. Wigner, Phys. Rev. 49, 519 (1936)

    Article  CAS  ADS  Google Scholar 

  22. J.M. Blatt et al., Theoretical Nuclear Physics (Wiley, New York, 1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Khalili.

Additional information

Communicated by Jérôme Margueron.

Appendices

Appendices

1.1 Appendix A: Electromagnetic transition

The matrix elements for transition \(J_0M_0\longrightarrow JM\) are calculated from the following equation:

$$\begin{aligned} \left\langle J_f M_f\left|\mathcal{\hat{Q}}(E\lambda )\right|J_{i} M_{i}\right\rangle = \ O_{if}(E\lambda )\left\langle J_{i}M_{i}\lambda \mu |J_fM_f\right\rangle ,\nonumber \\ \end{aligned}$$
(15)

where O\(_{if}(E\lambda )\) the reduced matrix elements are equal to

$$\begin{aligned} O_{if}(E\lambda )&=\frac{\left( -1\right) ^{j_f+I_{a}+J_{i}+\lambda }}{\sqrt{2J+1}}\ \left\{ \begin{array}{ccc} j_f &{} J_f &{} I_{a}\\ J_{i} &{} j_{i} &{} \lambda \end{array} \right\} \left[ \left( 2J_f\!+\!1\right) \left( 2J_{i}\!+\!1 \right) \right] ^{1/2}\ \nonumber \\&\quad \times \left\langle l_fj_f\left\| \mathcal{\hat{Q}}(E\lambda )\right\| l_{i}j_{i}\right\rangle _{J_f}, \end{aligned}$$
(16)

In this equation:

$$\begin{aligned} \displaystyle \left\langle l_fj_f\left\| \mathcal{\hat{Q}}(E\lambda )\right\| l_{i}j_{i}\right\rangle _{J_f}&=\frac{e_\lambda }{\sqrt{4\pi }}(-1)^{l_i+l+j_i-j}\frac{\hat{\lambda }\hat{j_i}}{\hat{J}} \left\langle j_i\frac{1}{2}\lambda _i\mid j\frac{1}{2}\lambda \right\rangle \nonumber \\&\quad \displaystyle \times \int \limits _{0}^{\infty }dr r^{\lambda } u^J_lj(r)u^{J_i}_{l_ij_i} \end{aligned}$$
(17)

The transition \( M_{\lambda } \) is as follows [17]:

$$\begin{aligned}{} & {} \left\langle l_fj_f\left\| \mathcal{\hat{Q}}(M\lambda )\right\| l_{i}j_{i} \right\rangle _{J_f}=\left( -1\right) ^{j_f+I_{a}+J_{i}+1}\ \nonumber \\{} & {} \quad \times \sqrt{\frac{3}{4\pi }}\mu _{N}\ \widehat{J_f}\widehat{J}_{i}\left\{ \begin{array}{ccc} j_f &{} J_f &{} I_{a}\\ J_{i} &{} j_{i} &{} 1 \end{array} \right\} \nonumber \\{} & {} \quad \times \left\{ b\frac{1}{\widehat{l}_{i}}e_{M}\left[ \frac{2\widetilde{j}_{i}}{\widehat{l}_{i}}\mathcal{I}_{ij} +\left( -1\right) ^{l_{i}+1/2-j}\frac{\widehat{j}_{i}}{\sqrt{2}}\delta _{j_{i},\ l_{i}\pm 1/2}\delta _{j,\ l_{i}\mp 1/2}\right] \right. \nonumber \\{} & {} \quad +g_{N}\frac{1}{\widehat{l}_{i}^{2}}\left[ \left( -1\right) ^{l_{i}+1/2-j_{i}}\hat{j}_{i}\delta _{j_f,\ j_{i}}-\mathcal{T}_{ij}\right] \nonumber \\{} & {} \quad \left. +g_{a}\left( -1\right) ^{I_{a}+j_{i}+J+1}\widehat{J}_{i} \widehat{J}\widehat{I}_{a}\widehat{I}_{a}\left\{ \begin{array}{ccc} I_{a} &{} J_f &{} j_{i}\\ J_{i} &{} I_{a} &{} 1 \end{array} \right\} \right\} \nonumber \\{} & {} \quad \times \int _{}^{}dr\ u_{l_0j_0}^{J_0}\left( r\right) \ u_{l_{}j_{}}^{J_{}}\left( r\right) , \end{aligned}$$
(18)

where \(\mathcal{I}_{ij}\) and \(\mathcal{T}_{ij}\) are defined as follows:

$$\begin{aligned} \mathcal{I}_{ij}= & {} \left( l_{i}\delta _{j_{i},\ l_{i}+1/2}+\left( l_{i}+1\right) \delta _{j_{i},\ l_{i}-1/2}\right) , \nonumber \\ \mathcal{T}_{ij}= & {} \left( -1\right) ^{l_{i}+1/2-j}\frac{\widehat{j}_{i}}{\sqrt{2}}\delta _{j_{i},\ l_{i}\pm 1/2}\delta _{j,\ l_{i}\mp 1/2}. \end{aligned}$$
(19)

The M1 and E2 transitions can are used for [18]

$$\begin{aligned} \Gamma _{E2}[eV]= & {} 8.13 \times 10^-7E^5_\gamma [MeV]B(E2)[e^2fm^4],\nonumber \\ \Gamma _{M1}[eV]= & {} 1.16\times 10^-2E^3_\gamma [MeV]B(M1)[\mu _N^2], \end{aligned}$$
(20)

and

$$\begin{aligned} S(E1)= & {} k_r^3(|{\mathcal{H}}_{if}|^2+|{\mathcal{H}}_{if}|^2),\nonumber \\ S(E2)= & {} \frac{75}{98}k_r^5(|{\mathcal{H}}_{if}\Vert ^2+\frac{3}{2}|{\mathcal{H}}_{if}\Vert ^2). \end{aligned}$$
(21)

In this equation k is photon number and \({\mathcal{H}}_{if}\) (i,f=are a and b nucleous) given by:

$$\begin{aligned} {\mathcal{H}}_{if}=\int _0^\infty r^2dr\bigg [\psi _f(r)r^\lambda \frac{\varphi _l(r)}{kr}\bigg ]e^{r\eta }(2\pi \eta )^{\frac{1}{2}} \end{aligned}$$
(22)

In above equation \(\psi _l\) is continum wave function describing the lth partial wave while \(\psi _f\) is the radial p-wave bound-state wave function.

1.2 Appendix B: Resonance strength

The resonance strength is showned by

$$\begin{aligned} (\omega _\gamma )_R=F_\Gamma (1+\delta _{ab}) \dfrac{2J_R+1}{(2J_a+1)(2J_b+1)} \end{aligned}$$
(23)

\(F_\Gamma \) is defined by \(\frac{\Gamma _p\Gamma _\gamma }{\Gamma _{tot}}\). For the case of narrow resonances, \((\omega _\gamma )_R\) can be used for calculation expectation value of product \(\sigma v\) \((\langle \sigma v\rangle )\).

$$\begin{aligned} <\sigma v\>=\bigg (\frac{2\pi }{m_{ab}kT}\bigg )^{\frac{3}{2}}\hbar ^2(\omega _\gamma )_Rexp\Bigg (-\frac{E_r}{kT}\Bigg ) \end{aligned}$$
(24)

and for broad resonance we can use:

$$\begin{aligned} <\sigma v\>=C(T)\int ^\infty _0\sigma (E)exp\Bigg (-\frac{E}{k_BT}\Bigg )dE \end{aligned}$$
(25)

where \(C(T)=4(\frac{2}{\pi m_{ab}(k_BT)^3})^{\frac{1}{2}} \). The resonance cross section for a narrow resonance is approximated by the Wigner-Bright expression [19,20,21,22].

$$\begin{aligned} \sigma _r(E)=\frac{\pi \hbar ^2}{2\mu E}\dfrac{(2J_R+1)}{(2J_a+1)(2J_b+1)}\dfrac{\Gamma p \Gamma _\gamma }{(E_r-E)^2+(\frac{\Gamma _{tot}}{2})}\nonumber \\ \end{aligned}$$
(26)

The radiative capture cross section for the reaction \(a+b\longrightarrow c+\gamma \), where \((\pi \lambda )\) \(=E,(M)\)=E(electric) or M(magnetic) transition, is defined as follows:

$$\begin{aligned} \sigma ^{d.c}_{(\pi \lambda )}(E)=I_{ac} \bigg (\frac{E_\gamma }{\hbar c}\bigg )^{2\lambda -1}\sigma _\gamma ^{(\lambda )}(E_\gamma ) \end{aligned}$$
(27)

where \(I_{ac}\) =\(\dfrac{2(2I_c+1)}{(2I_a+1)(2s+1)}\). In the phase shift section, we can use the following formula:

$$\begin{aligned} \delta _R(E)\simeq \frac{\pi }{2}-(E_r-E)\frac{d\delta }{dE}\bigg |_R \end{aligned}$$
(28)

In the case of a(b,\(\gamma \))c charged particles(a anb b) S(E) is presented to be a slowly varying function compared to cross section in energy for non resonant nuclear reactions. In this senario, S(E) can be evaluated in a McLaurin series:

$$\begin{aligned} S(E)=S(0)+\dot{S}(E)+\frac{1}{2}\ddot{S}(0) E^2+\cdots \end{aligned}$$
(29)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvand, M., Khalili, H. Examination of gamma radiation from \(\mathrm{^{10}B(p,\gamma )^{11}C}\) reaction at low energies. Eur. Phys. J. A 60, 16 (2024). https://doi.org/10.1140/epja/s10050-024-01238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01238-1

Navigation