Skip to main content
Log in

Physical design of a high-intensity compact D–D/D–T neutron generator based on the internal antenna RF ion source

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

A Publisher Erratum to this article was published on 02 February 2024

This article has been updated

Abstract

A high-intensity compact D–D/D–T neutron generator with a thick adsorption target is designed with an intensity of 1012 n/s. In this work, a radio-frequency (RF) ion source ignited by an internal antenna is designed with magnetic mirror fields in both axial and radial directions, which can facilitate the confinement of high-density plasma and prolong the service life of the ion source. According to the finite element method software COMSOL Multiphysics, a high-current low-energy D+ beam transport line is simulated and designed with the deuterium beam of 200 keV/6 mA. In particular, the adsorption target is fixed at an angle of 45° with respect to the beam direction, which is beneficial to reduce the beam power density of the target. The simulation results show that the maximum temperature of the target surface is 171.0 °C, which would reduce deuterium or tritium release from the adsorption target. According to the Multi-layer computing model, neutron energy spectra, angular distributions and integrated yields of the compact D–D/D–T neutron generator are calculated and evaluated, corresponding to a thick adsorption target at the deuterium beam of 200 keV/6 mA. The compact D–D/D–T neutron generator can produce quasi-mono-energetic neutrons with energy of 2.45 or 14.1 MeV, respectively, corresponding to the neutron yields up to 6.06 × 109 and 1.18 × 1012 n/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

Change history

References

  1. S.Y. Zhang, X. Yang, Y.X. Wang, X.H. Bai et al., Eur. Phys. J. A 59, 5 (2023)

    Article  ADS  Google Scholar 

  2. R.R. Greenberg, P. Bode, E.A. De Nadai Fernandes, Spectrochim. Acta B At. Spectrosc. 66(3), 193–241 (2011)

    Article  ADS  CAS  Google Scholar 

  3. J.H. Vainionpaa et al., Nucl. Instrum. Methods Phys. Res. Sect. B 350, 88–93 (2015)

    Article  ADS  CAS  Google Scholar 

  4. E. Lehmann, G. Frei, A. Nordlund et al., IEEE Trans. Nucl. Sci. 52(1), 389–393 (2005)

    Article  ADS  CAS  Google Scholar 

  5. C.S. Lim, J. Radioanal. Nucl. Chem. 262(2), 525–532 (2004)

    Article  CAS  Google Scholar 

  6. B.D. Sowerby, Appl. Radiat. Isot. 67(9), 1638–1643 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. D. Koltick, Y. Kim, S. Mcconchie et al., Nucl. Inst. Methods Phys. Res. B 261(1–2), 277–280 (2007)

    Article  ADS  CAS  Google Scholar 

  8. T. Misawai, Y. Yamaguchi, T. Yagi, et al., Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. IEEE (2012)

  9. J.H. Vainionpaa et al., Phys. Proc. 60, 203–211 (2014)

    Article  CAS  Google Scholar 

  10. J.H. Vainionpaa, J.L. Harris, M.A. Piestrup, et al., High Yield Neutron Generators Using The DD Reaction. International Conference Application of Accelerators in Research and Industry (2013)

  11. J. Reijonen, Proceedings of the 2005 Particle Accelerator Conference. IEEE (2005)

  12. D.L. Williams, et al., AIP Conference Proceedings, vol. 1099(1). American Institute of Physics (2009)

  13. Z.-W. Huang et al., J. Instrum. 13(1), P01013 (2018)

    Article  Google Scholar 

  14. Z.-W. Huang et al., Nucl. Sci. Techn. 30(5), 86 (2019)

    Article  Google Scholar 

  15. Z. Huang et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equipment 904, 107–112 (2018)

    Article  ADS  CAS  Google Scholar 

  16. J. Reijonen et al., Rev. Sci. Instrum. 71(2), 1134–1136 (2000)

    Article  ADS  CAS  Google Scholar 

  17. P. Yubo, N. Zhanqi, W. Xuezhi et al., At. Energy Sci. Technol. 3, 193–197 (1993). (in Chinese)

    Google Scholar 

  18. S. Biehe, C. Qin, Nucl. Tech. 14, 731 (1991). (in Chinese)

    Google Scholar 

  19. Z. Yu, Research on D–T/D–D neutron generator technology (Lanzhou University, Lanzhou, 2011). (in Chinese)

    Google Scholar 

  20. J. Reijonen, et al., Charged Particle Detection, Diagnostics, and Imaging, vol 4510. SPIE (2001)

  21. J. Reijonen, K.N. Leung, G. Jones, Rev. Sci. Instrum. 73(2), 934–936 (2002)

    Article  ADS  CAS  Google Scholar 

  22. K.-N. Leung, Rev. Sci. Instrum. 69(2), 998–1002 (1998)

    Article  ADS  CAS  Google Scholar 

  23. J. Hopwood et al., J. Vac. Sci. Technol. A Vacuum Surf. Films 11(1), 152–156 (1993)

    Article  ADS  CAS  Google Scholar 

  24. H. Muta et al., Surf. Coat. Technol. 174, 152–156 (2003)

    Article  Google Scholar 

  25. D. Wutte et al., Nucl. Instrum. Methods Phys. Res. Sect. B 142(3), 409–416 (1998)

    Article  ADS  CAS  Google Scholar 

  26. S.K. Hahto et al., Rev. Sci. Instrum. 75(2), 355–359 (2004)

    Article  ADS  CAS  Google Scholar 

  27. M. Hosseinzadeh, H. Afarideh, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equipment 735, 416–421 (2014)

    Article  ADS  CAS  Google Scholar 

  28. B.A. Ludewigt, R.P. Wells, J. Reijonen, Nucl. Instrum. Methods Phys. Res. Sect. B 261(1–2), 830–834 (2007)

    Article  ADS  CAS  Google Scholar 

  29. J. Kim, Nucl. Inst. Methods 145(1), 9–17 (1977)

    Article  ADS  CAS  Google Scholar 

  30. Z. Wei et al., Eur. Phys. J. A 55(9), 162 (2019)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (12075105, U2167203) and the Fundamental Research Funds for the Central Universities (lzujbky-2022-kb07, lzujbky-2023-stlt01, lzujbky-2022-ey14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Additional information

Communicated by Navin Alahari

The original online version of this article was revised: In this article S.Y. Zhang was incorrectly denoted as the corresponding author but it should have been Y. Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X.H., Wei, Z., Wu, K. et al. Physical design of a high-intensity compact D–D/D–T neutron generator based on the internal antenna RF ion source. Eur. Phys. J. A 59, 284 (2023). https://doi.org/10.1140/epja/s10050-023-01177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01177-3

Navigation