Skip to main content
Log in

Study on secondary electron suppression in compact D–D neutron generator

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A compact D–D neutron generator, with a peak neutron yield of D–D reactions up to 2.48 × 108 n/s is being developed at Lanzhou University in China for application in real-time neutron activation analysis. During tests, the problem of back acceleration of secondary electrons liberated from the neutron production target by deuterium ions bombardment was encountered. In this study, an electric field method and a magnetic field method for suppressing secondary electrons are designed and experimentally investigated. The experimental results show that the electric field method is superior to the magnetic field method. Effective suppression of the secondary electrons can be achieved via electrostatic suppression when the bias voltage between the target and the extraction-accelerating electrode is > 204 V. Furthermore, the secondary electron emission coefficient for the mixed deuterium ion (D1+, D2+, and D3+) impacting on molybdenum is estimated. In the deuterium energy range of 80–120 keV, the estimated secondary electron emission coefficients are approximately 5–5.5 for the mixed deuterium ion glancing incidence of 45° and approximately 3.5–3.9 for the mixed deuterium ion normal incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.Z. Bilheux, R. Mcgreevy, I.S. Anderson, Neutron Imaging and Applications (Springer, Boston, 2009), p. 67

    Book  Google Scholar 

  2. International Atomic Energy, Neutron Generators for Analytical Purposes, IAEA Radiation Technology Reports No. 1, IAEA, Vienna (2012)

  3. J.I.A. Fuquan, G.U. Deshan, C. Daowen et al., An neutron generator-based NIPGA system for on-site analysis. Nucl. Sci. Tech. 21(1), 63–64 (2010). https://doi.org/10.13538/j.1001-8042/nst.21.63-64

    Article  Google Scholar 

  4. R. Ravisankar, P. Eswaran, N. Seshaderssan et al., Instrumental neutron activation analysis of beachrock samples of South East Coast of Tamilnadu, India. Nucl. Sci. Tech. 18(4), 204–211 (2007). https://doi.org/10.1016/S1001-8042(07)60047-5

    Article  Google Scholar 

  5. Z.W. Huang, J.R. Wang, Z. Wei et al., Development of a compact DD neutron generator. J. Instrum. 13(01), P01013 (2018). https://doi.org/10.1088/1748-0221/13/01/P01013

    Article  Google Scholar 

  6. A.G. Hill, W.W. Buechner, J.S. Clark et al., The emission of secondary electrons under high energy positive ion bombardment. Phys. Rev. 55(5), 463 (1939). https://doi.org/10.1103/PhysRev.55.463

    Article  Google Scholar 

  7. I.H. Tan, M. Ueda, R.S. Dallaqua et al., Magnetic suppression of secondary electrons in plasma immersion ion implantation. Appl. Phys. Lett. 86(2), 023509 (2005). https://doi.org/10.1063/1.1852704

    Article  Google Scholar 

  8. H.C. Bourne Jr., R.W. Cloud, J.G. Trump, Role of positive ions in high-voltage breakdown in vacuum. J. Appl. Phys. 26(5), 596–599 (1955). https://doi.org/10.1063/1.1722047

    Article  Google Scholar 

  9. R. Adams, L. Bort, R. Zboray et al., Development and characterization of a D-D fast neutron generator for imaging applications. Appl. Radiat. Isot. 96, 114–121 (2015). https://doi.org/10.1016/j.apradiso.2014.11.017

    Article  Google Scholar 

  10. M.A. Wasaye, H. Wang, P. He, An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons. Nucl. Sci. Tech. 28(5), 65–73 (2017). https://doi.org/10.1007/s41365-017-0218-7

    Article  Google Scholar 

  11. J.E. Bounden, P.D. Lomer, J. Wood, A neutron tube with constant output (1010 n/sec) for activation analysis and reactor applications. Nucl. Instrum. Methods. 33(2), 283–288 (1965). https://doi.org/10.1016/0029-554X(65)90055-8

    Article  Google Scholar 

  12. S.G. Forbes, E.R. Graves, R.N. Little, Low voltage 14 MeV neutron source. Rev. Sci. Instrum. 24(6), 424–427 (1953). https://doi.org/10.1063/1.1770737

    Article  Google Scholar 

  13. A.S. Tsybin, A.E. Shikanov, Neutron generation in small sealed accelerating tubes. Russ. Phys. J. 28(8), 609–632 (1985). https://doi.org/10.1007/BF00895162

    Article  Google Scholar 

  14. I.J. Kim, H.D. Choi, Development of D–D neutron generator. Nucl. Instrum. Meth. B 241(1–4), 917–920 (2005). https://doi.org/10.1016/j.nimb.2005.07.170

    Article  Google Scholar 

  15. C. Waltz, M. Ayllon, T. Becker et al., Beam-induced back-streaming electron suppression analysis for an accelerator type neutron generator designed for 40Ar/39Ar geochronology. Appl. Radiat. Isot. 125, 124–128 (2017). https://doi.org/10.1016/j.apradiso.2017.04.017

    Article  Google Scholar 

  16. B. Goplen, L. Ludeking, D. Smith et al., User-configurable MAGIC for electromagnetic PIC calculations. Comput. Phys. Commun. 87(1–2), 54–86 (1995)

    Article  Google Scholar 

  17. H. Nguyen, J. Mankowski, J.C. Dickens et al., Calculations of secondary electron yield of graphene coated copper for vacuum electronic applications. AIP Adv. 8(1), 015325 (2018). https://doi.org/10.1063/1.5019360

    Article  Google Scholar 

  18. J.L. Wurtz, C.M. Tapp, Secondary electron emission from scandium, erbium, scandium deuteride, and erbium deuteride under deuteron bombardment. J. Appl. Phys. 43(8), 3318–3324 (1972). https://doi.org/10.1063/1.1661714

    Article  Google Scholar 

  19. J.L. Ke, M. Liu, C.G. Zhou, Deuteron induced secondary electron emission from titanium deuteride surface. Nucl. Instrum. Meth. B 280, 1–4 (2012). https://doi.org/10.1016/j.nimb.2012.02.033

    Article  Google Scholar 

  20. M. Liu, J.L. Ke, G. Huang et al., Measurement of the secondary electrons emission coefficiency from molybdenum induced deuteriums (Nucl. Electron. Detect. Technol., Beijing, 2012). (in Chinese)

    Google Scholar 

  21. R.A. Langley, J. Bohdansky, W. Eckstein et al., Data compendium for plasma-surface interactions. Nucl. Fusion 24(S1), S9 (1984). https://doi.org/10.1088/0029-5515/24/S1/001

    Article  Google Scholar 

  22. S.B. Svensson, G. Holmen, A. Buren, Angular dependence of the ion-induced secondary-electron yield from solids. Phys. Rev. B 24(7), 3749 (1981). https://doi.org/10.1103/PhysRevB.24.3749

    Article  Google Scholar 

  23. G.W. McClure, High-voltage glow discharges in D2 gas. I. Diagnostic measurements. Phys. Rev. 124(4), 969 (1961). https://doi.org/10.1103/PhysRev.124.969

    Article  Google Scholar 

  24. B.H. Sun, Q. Chen, Characteristics of intense beam for a duoplasmatron source. Nucl. Tech. 14(12), 731–737 (1991). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang or Ze-En Yao.

Additional information

This work was supported by the National Key Scientific Instrument and Equipment Development Project of China (2013YQ40861), the National Natural Science Foundations of China (11875155, 11705071), and the Fundamental Research Funds for the Central Universities of China (lzujbky-2019-kb09).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZW., Bai, XH., Liu, CQ. et al. Study on secondary electron suppression in compact D–D neutron generator. NUCL SCI TECH 30, 86 (2019). https://doi.org/10.1007/s41365-019-0596-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0596-0

Keywords

Navigation