Skip to main content
Log in

Helium burning and neutron sources in the stars

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple-\( \alpha\) process, and oxygen, through the 12C(\( \alpha\),\( \gamma\))16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C(\( \alpha\), n)16O and the 22Ne(\( \alpha\), n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hoyle, D.N.F. Dumbar, W.A. Wensel, W. Whaling, Phys. Rev. 92, 649 (1953)

    Article  ADS  Google Scholar 

  2. P.G. Prada Moroni, O. Straniero, Astroph. J. 581, 585 (2002)

    Article  ADS  Google Scholar 

  3. A. Burrows, Rev. Mod. Phys. 85, 245 (2013)

    Article  ADS  Google Scholar 

  4. G. Imbriani et al., Astroph. J. 558, 903 (2001)

    Article  ADS  Google Scholar 

  5. I. Domínguez, P. Höflich, O. Straniero, Astroph. J. 557, 279 (2001)

    Article  ADS  Google Scholar 

  6. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Kunz, M. Jaeger, A. Mayer, J.W. Hammer et al., Phys. Rev. Lett. 86, 3244 (2001)

    Article  ADS  Google Scholar 

  8. O. Straniero, I. Domínguez, G. Imbriani, L. Piersanti, Astroph. J. 583, 878 (2003)

    Article  ADS  Google Scholar 

  9. O. Straniero, R. Gallino, S. Cristallo, Nucl. Phys. A 777, 311 (2006)

    Article  ADS  Google Scholar 

  10. R. Gallino et al., Astroph. J. 497, 388 (1998)

    Article  ADS  Google Scholar 

  11. F. Kaeppeler et al., Astroph. J. 437, 396 (1994)

    Article  ADS  Google Scholar 

  12. L.R. Yungelson, White Dwarfs: Cosmological and Galactic Probes, edited by E.M. Sion, S. Vennes, H.L. Shipman, in Astrophys. Space Sci. Lib., Vol. 332 (Springer, Berlin, 2005) pp. 163--173

  13. P. Hoeflich, A. Khokhlov, Astroph. J. 457, 500 (1996)

    Article  ADS  Google Scholar 

  14. P.G. Prada Moroni, O. Straniero, Astron. Astrophys. 466, 1043 (2007)

    Article  ADS  Google Scholar 

  15. J.D. Larson, R.H. Spears, Nucl. Phys. A 56, 497 (1964)

    Article  Google Scholar 

  16. P. Dyer, C.A. Barnes, Nucl. Phys. A 233, 495 (1974)

    Article  ADS  Google Scholar 

  17. K.U. Kettner, H.W. Becker, L. Buchmann, J. Görres, et al., Z. Phys. A 308, 73 (1982)

    Article  ADS  Google Scholar 

  18. A. Redder, H.W. Becker, C. Rolfs, H.P. Trautvetter et al., Nucl. Phys. A 462, 385 (1987)

    Article  ADS  Google Scholar 

  19. R.M. Kremer, C.A. Barnes, K.H. Chang, H.C. Evans, B.W. Filippone, Phys. Rev. Lett. 60, 1475 (1988)

    Article  ADS  Google Scholar 

  20. J.M.L. Ouellet, M.N. Butler, H.C. Evans, H.W. Lee et al., Phys. Rev. C 54, 1982 (1996)

    Article  ADS  Google Scholar 

  21. G. Roters, C. Rolfs, F. Strieder, H.P. Trautvetter, Eur. Phys. J. A 6, 451 (1999)

    Article  ADS  Google Scholar 

  22. L. Gialanella, D. Rogalla, F. Strieder, S. Theis et al., Eur. Phys. J. A 11, 357 (2001)

    Article  ADS  Google Scholar 

  23. M. Fey, PhD thesis, Universität Stuttgart, Germany (2004)

  24. M. Assunção, M. Fey, A. Lefebvre-Schuhl, J. Kiener et al., Phys. Rev. C 73, 055801 (2006)

    Article  ADS  Google Scholar 

  25. C. Matei, L. Buchmann, W.R. Hannes, D.A. Hutcheon et al., Phys. Rev. Lett. 97, 242503 (2006)

    Article  ADS  Google Scholar 

  26. H. Makii et al., Phys. Rev. C 80, 065802 (2009)

    Article  ADS  Google Scholar 

  27. D. Schürmann et al., Phys. Lett. B 703, 557 (2011)

    Article  ADS  Google Scholar 

  28. R. Plag et al., Phys. Rev. C 86, 015805 (2012)

    Article  ADS  Google Scholar 

  29. M. D’Agostino Bruno et al., Nuovo Cimento A 27, 1 (1975)

    Article  ADS  Google Scholar 

  30. R. Plaga et al., Nucl. Phys. A 465, 291 (1987)

    Article  ADS  Google Scholar 

  31. P. Tischhauser, R.E. Azuma, L. Buchmann, R. Detwiler et al., Phys. Rev. Lett. 88, 072501 (2002)

    Article  ADS  Google Scholar 

  32. P. Tischhauser, A. Couture, R. Detwiler, J. Görres et al., Phys. Rev. C 79, 055803 (2009)

    Article  ADS  Google Scholar 

  33. Z. Zhao et al., Phys. Rev. Lett. 70, 2066 (1993)

    Article  ADS  Google Scholar 

  34. R.E. Azuma, L. Buchmann, F.C. Barker, C.A. Barnes et al., Phys. Rev. C 50, 1194 (1994)

    Article  ADS  Google Scholar 

  35. R.H. France, III, E.L. Wilds, J.E. McDonald, M. Gai, Phys. Rev. C 75, 065802 (2007)

    Article  ADS  Google Scholar 

  36. X.D. Tang, K.E. Rehm, I. Ahmad, C.R. Brune et al., Phys. Rev. Lett. 99, 052502 (2007)

    Article  ADS  Google Scholar 

  37. C.R. Brune, W.H. Geist, R.W. Kavanagh, K.D. Veal, Phys. Rev. Lett. 83, 4025 (1999)

    Article  ADS  Google Scholar 

  38. S. Adhikari, C. Basu, Phys. Lett. B 704, 308 (2011)

    Article  ADS  Google Scholar 

  39. M.L. Avila et al., Phys. Rev. Lett. 114, 071101 (2015)

    Article  ADS  Google Scholar 

  40. D. Schürmann, A. Di Leva, L. Gialanella, D. Rogalla et al., Eur. Phys. J. A 26, 301 (2005)

    Article  ADS  Google Scholar 

  41. C.R. Brune, Phys. Rev. C 66, 044611 (2002)

    Article  ADS  Google Scholar 

  42. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  43. F.C. Barker, T. Kajino, Aust. J. Phys. 44, 369 (1991)

    Article  ADS  Google Scholar 

  44. D. Schrmann, L. Gialanella, R. Kunz, F. Strieder, Phys. Lett. B 711, 35 (2012)

    Article  ADS  Google Scholar 

  45. M. Gai, Phys. Rev. C 88, 062801 (2013)

    Article  ADS  Google Scholar 

  46. O. Straniero, S. Cristallo, L. Piersanti, Astropyis. J. 785, 77 (2014) arXiv:1403.0819 [astro-ph.GA]

    Article  ADS  Google Scholar 

  47. M. Heil et al., Phys. Rev. C 78, 025803 (2008)

    Article  ADS  Google Scholar 

  48. O. Straniero, R. Gallino, S. Cristallo, Nucl. Phys. A 777, 311 (2006) Special Issue on Nuclear Astrophysics

    Article  ADS  Google Scholar 

  49. S. Cristallo et al., Astrophys. J. 696, 797 (2009)

    Article  ADS  Google Scholar 

  50. H.W. Drotleff et al., Astrophys. J. 414, 735 (1993)

    Article  ADS  Google Scholar 

  51. C.R. Brune, I. Licot, R.W. Kavanagh, Phys. Rev. C 48, 3119 (1993)

    Article  ADS  Google Scholar 

  52. C.N. Davids, Nucl. Phys. A 110, 619 (1968)

    Article  ADS  Google Scholar 

  53. S. Harissopulos et al., Phys. Rev. C 72, 062801 (2005)

    Article  ADS  Google Scholar 

  54. P. Descouvemont, Phys. Rev. C 36, 2206 (1987)

    Article  ADS  Google Scholar 

  55. B. Guo et al., Astrophys. J. 756, 193 (2012)

    Article  ADS  Google Scholar 

  56. S. Kubono et al., Phys. Rev. Lett. 90, 062501 (2003)

    Article  ADS  Google Scholar 

  57. N. Keeley, K. Kemper, D.T. Khoa, Nucl. Phys. A 726, 159 (2003)

    Article  ADS  Google Scholar 

  58. M.G. Pellegriti et al., Phys. Rev. C 77, 042801 (2008)

    Article  ADS  Google Scholar 

  59. E.D. Johnson et al., Phys. Rev. Lett. 97, 192701 (2006)

    Article  ADS  Google Scholar 

  60. M.L. Avila et al., Phys. Rev. C 91, 048801 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. M. La Cognata et al., Phys. Rev. Lett. 109, 232701 (2012)

    Article  ADS  Google Scholar 

  62. C. Ugalde, PoS (NIC X), 038 (2008)

    Google Scholar 

  63. M. Jaeger et al., Phys. Rev. Lett. 87, 202501 (2001)

    Article  ADS  Google Scholar 

  64. R. Longland, C. Iliadis, A.I. Karakas, Phys. Rev. C 85, 065809 (2012)

    Article  ADS  Google Scholar 

  65. U. Giesen et al., Nucl. Phys. A 561, 95 (1993)

    Article  ADS  Google Scholar 

  66. R. Longland et al., Phys. Rev. C 80, 055803 (2009)

    Article  ADS  Google Scholar 

  67. C.E. Porter, R.G. Thomas, Phys. Rev. 104, 483 (1956)

    Article  ADS  Google Scholar 

  68. M. Jaeger et al., Phys. Rev. Lett. 87, 202501 (2001)

    Article  ADS  Google Scholar 

  69. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)

  70. H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  71. R. Longland, C. Iliadis, A. Champagne, C. Fox, J. Newton, Nucl. Instrum. Methods Phys. Res. 566, 452 (2006)

    Article  ADS  Google Scholar 

  72. A. Best et al., Eur. Phys. J. A 52, 72 (2016) contribution to this Topical Issue

    Article  Google Scholar 

  73. A. Guglielmetti, Phys. Dark Univ. 4, 10 (2014)

    Article  Google Scholar 

  74. Z. Debicki et al., Nucl. Phys. B Proc. Suppl. 196, 429 (2009)

    Article  ADS  Google Scholar 

  75. E. Bellotti, Report INFN/TC-85/19 Istituto Nazionale Fisica Nucleare (1985).

  76. A. Rindi, F. Celani, M. Lindozzi, S. Miozzi, Nucl. Instrum. Methods Phys. Res. A 272, 871 (1988)

    Article  ADS  Google Scholar 

  77. P. Belli et al., Nuovo Cimento A 101, 959 (1989)

    Article  ADS  Google Scholar 

  78. R. Aleksan et al., Nucl. Instrum. Methods Phys. Res. A 274, 203 (1989)

    Article  ADS  Google Scholar 

  79. M. Cribier et al., Astropart. Phys. 4, 23 (1995)

    Article  ADS  Google Scholar 

  80. F. Arneodo et al., Nuovo Cimento A 112, 819 (1999)

    ADS  Google Scholar 

  81. A. Best et al., Nucl. Instrum. Methods A 812, 1 (2016)

    Article  ADS  Google Scholar 

  82. S. Falahat, PhD thesis, University of Mainz (2010)

  83. M. Heil et al., Phys. Rev. C 78, 025803 (2008)

    Article  ADS  Google Scholar 

  84. http://www.eljentechnology.com

  85. http://www.detectors.saint-gobain.com

  86. http://www.crystals.saint-gobain.com/ uploadedFiles/SG-Crystals/Documents/SGC% 20BC501_501A_519%20Data%20Sheet.pdf

  87. http://www.crystals.saint-gobain.com/ uploadedFiles/SG-Crystals/Documents/SGC% 20BC523A%20Data%20Sheet.pdf

  88. G. Ciani, Rivelazione di neutroni in esperimenti di astrofisica nucleare: studio e caratterizzazione di scintillatori liquidi organici, Master’s thesis, Università di Bari (2015)

  89. W.-P. Liu, Z.-H. Li, Y.-B. Wang, B. Guo, Y.-P. Shen (Editors), Proceedings of The 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG2015) Beijing, China, June 24-27, 2015, in EPJ Web of Conferences, Vol. 109 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prati.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliotta, M., Junker, M., Prati, P. et al. Helium burning and neutron sources in the stars. Eur. Phys. J. A 52, 76 (2016). https://doi.org/10.1140/epja/i2016-16076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16076-3

Keywords

Navigation