Skip to main content
Log in

Collective dynamics of colloids at fluid interfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The evolution of an initially prepared distribution of micron-sized colloidal particles, trapped at a fluid interface and under the action of their mutual capillary attraction, is analyzed by using Brownian dynamics simulations. At a separation \( \lambda\) given by the capillary length of typically 1mm, the distance dependence of this attraction exhibits a crossover from a logarithmic decay, formally analogous to two-dimensional gravity, to an exponential decay. We discuss in detail the adaptation of a particle-mesh algorithm, as used in cosmological simulations to study structure formation due to gravitational collapse, to the present colloidal problem. These simulations confirm the predictions, as far as available, of a mean-field theory developed previously for this problem. The evolution is monitored by quantitative characteristics which are particularly sensitive to the formation of highly inhomogeneous structures. Upon increasing \( \lambda\) the dynamics shows a smooth transition from the spinodal decomposition expected for a simple fluid with short-ranged attraction to the self-gravitational collapse scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  2. P. Bladon, D. Frenkel, Phys. Rev. Lett. 74, 2519 (1995)

    Article  ADS  Google Scholar 

  3. A.H. Marcus, S.A. Rice, Phys. Rev. E 55, 637 (1997)

    Article  ADS  Google Scholar 

  4. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)

    Article  ADS  Google Scholar 

  5. K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721 (1999)

    Article  ADS  Google Scholar 

  6. N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997)

    Article  Google Scholar 

  7. J. Aizenberg, P.V. Braun, P. Wiltzius, Phys. Rev. Lett. 84, 2997 (2000)

    Article  ADS  Google Scholar 

  8. L.E. Helseth, R.M. Muruganathan, Y. Zhang, T.M. Fischer, Langmuir 21, 7271 (2005)

    Article  Google Scholar 

  9. J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)

    Article  ADS  Google Scholar 

  10. M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)

    Article  Google Scholar 

  11. A. Domínguez, in Structure and Functional Properties of Colloidal Systems, edited by R. Hidalgo-Alvarez (CRC Press, Boca Raton, 2010) p. 31

  12. A. Domínguez, M. Oettel, S. Dietrich, Phys. Rev. E 82, 011402 (2010)

    Article  ADS  Google Scholar 

  13. M.M. Nicolson, Proc. Camb. Philos. Soc. 45, 288 (1949)

    Article  ADS  MATH  Google Scholar 

  14. D.Y.C. Chan, J.D. Henry Jr., L.R. White, J. Colloid Interface Sci. 79, 410 (1981)

    Article  Google Scholar 

  15. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, K. Nagayama, J. Colloid Interface Sci. 157, 100 (1993)

    Article  Google Scholar 

  16. M. Oettel, A. Domínguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)

    Article  ADS  Google Scholar 

  17. A. Domínguez, M. Oettel, S. Dietrich, J. Phys.: Condens. Matter 17, S3387 (2005)

    Article  ADS  Google Scholar 

  18. M.M. Müller, M. Deserno, J. Guven, Europhys. Lett. 69, 482 (2005)

    Article  ADS  Google Scholar 

  19. A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)

    Article  ADS  Google Scholar 

  20. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Keller, L.A. Segel, J. Theor. Biol. 26, 399 (1970)

    Article  Google Scholar 

  22. P.-H. Chavanis, C. Sire, Physica A 387, 4033 (2008)

    Article  ADS  Google Scholar 

  23. P.-H. Chavanis, Physica A 390, 1546 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J.H. Jeans, Philos. Trans. R. Soc. London A 199, 1 (1902)

    Article  ADS  MATH  Google Scholar 

  25. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, 2008)

  26. J. Bleibel, S. Dietrich, A. Domínguez, M. Oettel, Phys. Rev. Lett. 107, 128302 (2011)

    Article  ADS  Google Scholar 

  27. A. Vincze, A. Agod, J. Kertész, M. Zrínyi, Z. Hórvölgyi, J. Chem. Phys. 114, 520 (2001)

    Article  ADS  Google Scholar 

  28. P. Singh, D.D. Joseph, N. Aubry, Soft Matter 6, 4310 (2010)

    Article  ADS  Google Scholar 

  29. M.K.H. Kiessling, Adv. Appl. Math. 31, 132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. D.L. Ermak, J. Chem. Phys. 62, 4189 (1975)

    Article  ADS  Google Scholar 

  31. M.P. Allen, D.J. Tildesly, Computer Simulation of Liquids (Oxford University Press, 1987)

  32. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Hilger, Bristol, 1988)

  33. M. Deserno, C. Holm, J. Chem. Phys. 108, 7678 (1998)

    Article  ADS  Google Scholar 

  34. A. Knebe, “PM Codes” slides available at: http://popia.ft.uam.es/aknebe/page3/files/ComputationalCosmology/07PMcodes.pdf

  35. P. Meakin, Phys. Scr. 46, 295 (1992)

    Article  ADS  Google Scholar 

  36. V. Sofonea, K.R. Mecke, Eur. Phys. J. B 8, 99 (1999)

    Article  ADS  Google Scholar 

  37. K.R. Mecke, in Statistical Physics and Spatial Statistics, edited by K.R. Mecke, D. Stoyan (Springer, Berlin, 2000) p. 111

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bleibel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleibel, J., Domínguez, A., Oettel, M. et al. Collective dynamics of colloids at fluid interfaces. Eur. Phys. J. E 34, 125 (2011). https://doi.org/10.1140/epje/i2011-11125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11125-5

Keywords

Navigation