Skip to main content
Log in

Menstrual Blood-Derived Mesenchymal Stromal Cells as a Resource for Regenerative Medicine

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The development of regenerative medicine creates the need for an accessible source of cells to stimulate the recovery processes in pathologically altered tissues and organs. Menstrual blood with fragments of desquamated endometrium containing mesenchymal stromal cells (MSCs) can be such a source. Endometrial MSCs are involved in the regeneration of the endometrial functional layer during the menstrual cycle. These cells are phenotypically similar to MSCs from other clinically relevant sources (bone marrow, adipose tissue, dental pulp, placenta) that are capable of active growth in vitro, and they have a wide differentiation potential. They secrete various biologically active substances in a paracrine manner and thereby stimulate cell survival and proliferation in affected tissues, regulate immune responses and angiogenesis, and prevent fibrosis. The potential use of menstrual blood-derived MSCs in various fields of medicine is being actively researched. Experiments on animals demonstrated the prospects of cell therapy with these cells for the treatment of pathologies of the cardiovascular, nervous, reproductive systems, skin wounds, myodystrophy, diabetes mellitus, and diseases of the liver, lungs, intestines and other organs. However, in order to successfully implement menstrual blood-derived MSCs in medical practice, further research is required to optimize protocols for cellular isolation, to assess possible risks of their transplantation, to overcome the problem of their low survival in the lesion focus, and to clarify the cellular and molecular mechanisms of their regenerative effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Akhavan-Tavakoli, M., Fard, M., Khanjani, S., Zare, S., Edalatkhah, H., et al., In vitro differentiation of menstrual blood stem cells into keratinocytes: a potential approach for management of wound healing, Biologicals, 2017, vol. 48, pp. 66–73.

    Article  CAS  PubMed  Google Scholar 

  2. Alcayaga-Miranda, F., González, P.L., Lopez-Verrilli, A., Varas-Godoy, M., Aguila-Díaz, C., et al., Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species, Oncotarget, 2016, vol. 7, no. 28, pp. 44462–44477.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anisimov, S.V., Zemelko, V.I., Grinchuk, T.M., and Nikolsky, N.N., Menstrual blood stem cells as a potential source for cell therapy, Cell Tissue Biol., 2013, vol. 7, no. 3, pp. 201–206.

    Article  Google Scholar 

  4. Asatrian, G., Pham, D., Hardy, W.R., James, A.W., and Peault, B., Stem cell technology for bone regeneration: current status and potential applications, Stem Cells Cloning, 2015, vol. 8, pp. 39–48.

    PubMed  PubMed Central  Google Scholar 

  5. Beeravolu, N., McKee, C., Alamri, A., Mikhael, S., Brown, C., et al., Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta, J. Vis. Exp., 2017, no. 122, p. 55224.

  6. Bernardo, M.E., Emons, J.A., Karperien, M., Nauta, A.J., Willemze, R., et al., Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources, Connect. Tissue Res., 2007, vol. 48, no. 3, pp. 132–140.

  7. Cervelló, I., Mas, A., Gil-Sanchis, C., Peris, L., Faus, A., et al., Reconstruction of endometrium from human endometrial side population cell lines, PLoS One, 2011, vol. 6, no. 6, p. e21221.

  8. Charif, N., Li, Y.Y., Targa, L., Zhang, L., Ye, J.S., et al., Aging of bone marrow mesenchymal stromal/stem cells: implications on autologous regenerative medicine, Biomed. Mater. Eng., 2017, vol. 28, suppl. 1, pp. S57–S63.

    CAS  PubMed  Google Scholar 

  9. Chen, J., Du, X., Chen, Q., and Xiang, C., Effects of donors’ age and passage number on the biological characteristics of menstrual blood-derived stem cells, Int. J. Clin. Exp. Pathol., 2015a, vol. 8, no. 11, pp. 14584–14595.

    PubMed  PubMed Central  Google Scholar 

  10. Chen, J.Y., Mou, X.Z., Du, X.C., and Xiang, C., Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins, Asian Pac. J. Trop. Med., 2015b, vol. 8, no. 9, pp. 739–746.

    Article  PubMed  Google Scholar 

  11. Chen, L., Zhang, C., Chen, L., Wang, X., Xiang, B., et al., Human menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate cells via paracrine mediators, Stem Cells Transl. Med., 2017, vol. 6, no. 1, pp. 272–284.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, L., Jingjing, Q., and Xiang, C., The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine, Stem Cell Res. Ther., 2019, vol. 10, no. 1, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dalirfardouei, R., Jamialahmadi, K., and Mahdipour, E., A feasible method for the isolation of mesenchymal stem cells from menstrual blood and their exosomes, Tissue Cell, 2018, vol. 55, pp. 53–62.

    Article  CAS  PubMed  Google Scholar 

  14. Darzi, S., Werkmeister, J.A., Deane, J.A., and Gargett, C.E., Identification and characterization of human endometrial mesenchymal stem/stromal cells and their potential for cellular therapy, Stem Cells Transl. Med., 2016, vol. 5, pp. 1127–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 2006, vol. 8, no. 4, pp. 315–317.

    Article  CAS  PubMed  Google Scholar 

  16. Domnina, A.P., Zemelko, V.I., Mikhailov, V.M., and Nikolsky, N.N., Stimulation of decidua development by transplantation of endometrial stem cells, J. Biomed. Sci. Eng., 2013, vol. 6, pp. 59–65.

    Article  Google Scholar 

  17. Domnina, A.P., Novikova, P.V., Fridlyanskaya, I.I., Shilina, M.A., Zenin, V.V., and Nikolsky, N.N., Induction of decidual differentiation in endometrial mesenchymal stem cells, Cell Tissue Biol., 2016, vol. 10, no. 2, pp. 95–99.

    Article  Google Scholar 

  18. Ercal, P., Pekozer, G.G., and Kose, G.T., Dental stem cells in bone tissue engineering: current overview and challenges, Adv. Exp. Med. Biol., 2018, vol. 1107, pp. 113–127.

    Article  CAS  PubMed  Google Scholar 

  19. Farzamfar, S., Naseri-Nosar, M., Ghanavatinejad, A., Vaez, A., Zarnani, A.H., et al., Sciatic nerve regeneration by transplantation of menstrual blood-derived stem cells, Mol. Biol. Rep., 2017, vol. 44, no. 5, pp. 407–412.

    Article  CAS  PubMed  Google Scholar 

  20. Freeman, B.T., Kouris, N.A., and Ogle, B.M., Tracking fusion of human mesenchymal stem cells after transplantation to the heart, Stem Cells Transl. Med., 2015, vol. 4, no. 6, pp. 685–694.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gargett, C.E., Schwab, K.E., and Deane, J.A., Endometrial stem/progenitor cells: the first 10 years, Hum. Reprod. Update, 2016, vol. 22, no. 2, pp. 137–163.

    CAS  PubMed  Google Scholar 

  22. Hu, J., Song, K., Zhang, J., Zhang, Y., and Tan, B.Z., Effects of menstrual blood derived stem cells on endometrial injury repair, Mol. Med. Rep., 2019, vol. 19, no. 2, pp. 813–820.

    CAS  PubMed  Google Scholar 

  23. Hu, X., Zhou, Y., Zheng, X., Tian, N., Xu, C., et al., Differentiation of menstrual blood-derived stem cells toward nucleus pulposus-like cells in a coculture system with nucleus pulposus cells, Spine, 2014, vol. 39, no. 9, pp. 754–760.

    Article  PubMed  Google Scholar 

  24. Huda, F., Fan, Y., Suzuki, M., Konno, A., Matsuzaki, Y., et al., Fusion of human fetal mesenchymal stem cells with “degenerating” cerebellar neurons in spinocerebellar ataxia type 1 model mice, PLoS One, 2016, vol. 11, no. 11, p. e0164202.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ichim, T.E., Solano, F., Lara, F., Rodriguez, J.P., Cristea, O., et al., Combination stem cell therapy for heart failure, Int. Arch. Med., 2010, vol. 3, no. 1, p. 5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jeon, Y.J., Kim, J., Cho, J.H., Chung, H.M., and Chae, J.I., Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy, J. Cell. Biochem., 2016, vol. 117, no. 5, pp. 1112–1125.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, Z., Hu, X., Yu, H., Xu, Y., Wang, L., et al., Human endometrial stem cells confers enhanced myocardial salvage and regeneration by paracrine mechanisms, J. Cell. Mol. Med., 2013, vol. 17, no. 10, pp. 1247–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khanjani, S., Khanmohammadi, M., Zarnani, A.H., Talebi, S., Edalatkhah, H., et al., Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells, J. Tissue Eng. Regen. Med., 2015, vol. 9, no. 11, pp. E124–E134.

    Article  CAS  PubMed  Google Scholar 

  29. Khanmohammadi, M., Khanjani, S., Edalatkhah, H., Zarnani, A.H., Heidari-Vala, H., et al., Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage, Cell Prolif., 2014, vol. 47, no. 6, pp. 615–623.

  30. Khanmohammadi, M., Golshahi, H., Saffarian, Z., Montazeri, S., Khorasani, S., et al., Repair of osteochondral defects in rabbit knee using menstrual blood stem cells encapsulated in fibrin glue: a good stem cell candidate for the treatment of osteochondral defects, Tissue Eng. Regen. Med., 2019, vol. 16, no. 3, pp. 311–324.

  31. Konala, V.B.R., Mamidi, M.K., Bhonde, R., Das, A.K., Pochampally, R., et al., The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration, Cytotherapy, 2016, vol. 18, no. 1, pp. 13–24.

    Article  CAS  PubMed  Google Scholar 

  32. Kovina, M.V., Krasheninnikov, M.E., Dyuzheva, T.G., Danilevsky, M.I., Klabukov, I.D., et al., Human endometrial stem cells: high-yield isolation and characterization, Cytotherapy, 2018, vol. 20, no. 3, pp. 361–374.

    Article  CAS  PubMed  Google Scholar 

  33. Lai, D., Guo, Y., Zhang, Q., Chen, Y., and Xiang, C., Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells, Acta Biochim. Biophys. Sin., 2016, vol. 48, no. 11, pp. 998–1005.

    Article  CAS  PubMed  Google Scholar 

  34. Li, C.Y., Wu, X.Y., Tong, J.B., Yang, X.X., Zhao, J.L., et al., Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy, Stem Cell Res. Ther., 2015, vol. 6, p. 55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, F., Alderman, M.H. III, Tal, A., Mamillapalli, R., Coolidge, A., et al., Hematogenous dissemination of mesenchymal stem cells from endometriosis, Stem Cells, 2018, vol. 36, no. 6, pp. 881–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y., Niu, R., Yang, F., Yan, Y., Liang, S., et al., Biological characteristics of human menstrual blood-derived endometrial stem cells, J. Cell. Mol. Med., 2018, vol. 22, no. 3, pp. 1627–1639.

    Article  CAS  PubMed  Google Scholar 

  37. Luz-Crawford, P., Torres, M.J., Noël, D., Fernandez, A., Toupet, K., et al., The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases, Stem Cells, 2016, vol. 34, no. 2, pp. 456–469.

    Article  CAS  PubMed  Google Scholar 

  38. Lv, H., Hu, Y., Cui, Z., and Jia, H., Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine, Stem Cell Res. Ther., 2018, vol. 9, no. 1, p. 325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehrabani, D., Nazarabadi, R.B., Kasraeian, M., Tamadon, A., Dianatpour, M., et al., Growth kinetics, characterization, and plasticity of human menstrual blood stem cells, Iran. J. Med. Sci., 2016, vol. 41, no. 2, pp. 132–139.

    PubMed  Google Scholar 

  40. Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., et al., Endometrial regenerative cells: a novel stem cell population, J. Transl. Med., 2007, vol. 5, p. 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paliwal, S., Chaudhuri, R., Agrawal, A., and Mohanty, S., Regenerative abilities of mesenchymal stem cells through mitochondrial transfer, J. Biomed. Sci., 2018, vol. 25, p. 31.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., et al., Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation, Cell Transplant., 2008, vol. 17, no. 3, pp. 303–311.

    Article  PubMed  Google Scholar 

  43. Ren, H., Sang, Y., Zhang, F., Liu, Z., Qi, N., et al., Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy, Stem Cells Int., 2016, vol. 2016, art. ID 3516574.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rodrigues, M.C., Lippert, T., Nguyen, H., Kaelber, S., Sanberg, P.R., et al., Menstrual blood-derived stem cells: in vitro and in vivo characterization of functional effects, Adv. Exp. Med. Biol., 2016, vol. 951, pp. 111–121.

    Article  CAS  PubMed  Google Scholar 

  45. Rossignoli, F., Caselli, A., Grisendi, G., Piccinno, S., Burns, J.S., et al., Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood, Biomed. Res. Int., 2013, vol. 2013, art. ID 901821.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Samsonraj, R.M., Raghunath, M., Nurcombe, V., Hui, J.H., van Wijnen, A.J., et al., Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine, Stem Cells Transl. Med., 2017, vol. 6, no. 12, pp. 2173–2185.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schneider, S., Unger, M., van Griensven, M., and Balmayor, E.R., Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine, Eur. J. Med. Res., 2017, vol. 22, no. 1, p. 17.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun, P., Liu, J., Li, W., Xu, X., Gu, X., et al., Human endometrial regenerative cells attenuate renal ischemia reperfusion injury in mice, J. Transl. Med., 2016, vol. 14, p. 28.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sun, Y., Ren, Y., Yang, F., He, Y., Liang, S., et al., High-yield isolation of menstrual blood-derived endometrial stem cells by direct red blood cell lysis treatment, Biol. Open, 2019, vol. 8, no. 5, p. bio038885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan, J., Li, P., Wang, Q., Li, Y., Li, X., et al., Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome, Hum. Reprod., 2016, vol. 31, no. 12, pp. 2723–2729.

    Article  PubMed  Google Scholar 

  51. Wu, Q., Wang, Q., Li, Z., Li, X., Zang, J., et al., Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model, Cell Death Dis., 2018, vol. 9, no. 9, p. 882.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu, X., Luo, Y., Chen, J., Pan, R., Xiang, B., et al., Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice, Stem Cells Dev., 2014, vol. 23, no. 11, pp. 1245–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, L., Liu, Y., Sun, Y., Wang, B., Xiong, Y., et al., Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue, Stem Cell Res. Ther., 2017, vol. 8, no. 1, p. 275.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu, Y., Zhu, H., Zhao, D., and Tan, J., Endometrial stem cells: clinical application and pathological roles, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 12, pp. 22039–22044.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, X., Devianti, M., Yang, Y.H., Ong, Y.R., Tan, K.S., et al., Endometrial mesenchymal stem/stromal cell modulation of T cell proliferation, Reproduction, 2019, vol. 157, no. 1, pp. 43–52.

    CAS  PubMed  Google Scholar 

  56. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., et al., Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle, Cell Tissue Res., 2007, vol. 327, no. 3, pp. 449–462.

    Article  CAS  PubMed  Google Scholar 

  57. Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., Artzibasheva, I.V., Zenin, V.V., et al., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells, Cell Tissue Biol., 2012, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

  58. Zhao, Y., Lan, X., Wang, Y., Xu, X., Lu, S., et al., Human endometrial regenerative cells attenuate bleomycin-induced pulmonary fibrosis in mice, Stem Cells Int., 2018, vol. 2018, art. ID 3475137.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng, Y., Zhou, Y., Zhang, X., Chen, Y., Zheng, X., et al., Effects of hypoxia on differentiation of menstrual blood stromal stem cells towards tenogenic cells in a co-culture system with Achilles tendon cells, Exp. Ther. Med., 2017, vol. 13, no. 6, pp. 3195–3202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhong, Z., Patel, A.N., Ichim, T.E., Riordan, N.H., Wang, H., et al., Feasibility investigation of allogeneic endometrial regenerative cells, J. Transl. Med., 2009, vol. 7, p. 15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Payushina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payushina, O.V., Tsomartova, D.A., Chereshneva, E.V. et al. Menstrual Blood-Derived Mesenchymal Stromal Cells as a Resource for Regenerative Medicine. Biol Bull Rev 12, 41–48 (2022). https://doi.org/10.1134/S2079086422010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422010054

Navigation