Skip to main content

Characteristics and Therapeutic Potential of Menstrual Blood-Derived Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

The tremendous regenerative capacity of the human endometrium is based on the activity of adult stem cells. Endometrial stem cells are mainly located in the basal layer, but could also be successfully isolated from the functional layer, which is shed during menstruation. Menstrual blood-derived stem cells (MenSCs) can be obtained by noninvasive procedures. They are characterized by high proliferative potential, long-term culturing properties, mesenchymal stem cell-like marker expression and multilineage differentiation potential. MenSCs have been successfully employed as therapeutics in animal models of myocardial infarction, stroke, Duchenne muscular dystrophy, and critical limb ischemia. Their allogeneic application is not associated with immunological side effects and does not promote tumor formation in vivo. Pilot studies have confirmed their safety upon applications in humans, and phase 1/2 clinical studies on their safety and therapeutic efficacy are ongoing. A systematic banking of immunoprofiled MenSCs will expand the therapeutic repertoire beyond autologous stem cell transplantations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13:87–101.

    Article  CAS  PubMed  Google Scholar 

  2. Sherman B, Korenman S. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest. 1975;55:699–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McLennan CE, Rydell AH. Extent of endometrial shedding during normal menstruation. Obstet Gynecol. 1965;26:605–21.

    CAS  PubMed  Google Scholar 

  4. Salamonsen LA, Kovacs GT, Findlay JK. Current concepts of the mechanisms of menstruation. Baillieres Best Pract Res Clin Obstet Gynaecol. 1999;13:161–79.

    Article  CAS  PubMed  Google Scholar 

  5. Toyoda M, Cui C, Umezawa A. Myogenic transdifferentiation of menstrual blood-derived cells. Acta Myol. 2007;26:176–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Gargett CE, Rogers PA. Human endometrial angiogenesis. Reproduction. 2001;121:181–6.

    Article  CAS  PubMed  Google Scholar 

  7. Salamonsen LA. Current concepts of the mechanisms of menstruation: a normal process of tissue destruction. Trends Endocrinol Metab. 1998;9:305–9.

    Article  CAS  PubMed  Google Scholar 

  8. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. New York: Garland Science; 2007.

    Google Scholar 

  9. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000;113:5–10.

    CAS  PubMed  Google Scholar 

  10. Findikli N, Candan NZ, Kahraman S. Human embryonic stem cell culture: current limitations and novel strategies. Reprod Biomed Online. 2006;13:581–90.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  12. Zaehres H, Kim JB, Schöler HR. Induced pluripotent stem cells. Methods Enzymol. 2010;476:309–25.

    Article  CAS  PubMed  Google Scholar 

  13. Mosca E, Cocola C, Sabour D, Pelucchi P, Bertalot G, Palumbo O, Carella M, Götte M, Schöler HR, Reinbold R, Zucchi I, Milanesi L. Overlapping genes may control reprogramming of mouse somatic cells into induced Pluripotent Stem Cells (iPSCs) and breast cancer stem cells. In Silico Biol. 2010;10:207–21.

    CAS  PubMed  Google Scholar 

  14. Schraufstatter IU, Discipio RG, Khaldoyanidi S. Mesenchymal stem cells and their microenvironment. Front Biosci. 2011;17:2271–88.

    Article  Google Scholar 

  15. Götte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006;66:10233–7.

    Article  PubMed  Google Scholar 

  16. Allickson JG, Sanchez A, Yefimenko N, Borlongan CV, Sanberg PR. Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. Open Stem Cell J. 2011;3:4–10.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 2010;19:439–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nikoo S, Ebtekar M, Jeddi-Tehrani M, Shervin A, Bozorgmehr M, Kazemnejad S, Zarnani AH. Effect of menstrual blood-derived stromal stem cells on proliferative capacity of peripheral blood mononuclear cells in allogeneic mixed lymphocyte reaction. J Obstet Gynaecol Res. 2012;38:804–9.

    Article  CAS  PubMed  Google Scholar 

  19. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization and differentiation. Cell Transplant. 2008;17:303–11.

    Article  PubMed  Google Scholar 

  20. Zemel’ko VI, Grinchuk TM, Domnina AP, Artsybasheva IV, Zenin VV, Kirsanov AA, Bichevaia NK, Korsak VS, Nikol’skiĭ NN. Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines. Tsitologiia. 2011;53:919–29.

    PubMed  Google Scholar 

  21. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa A. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26:1695–704.

    Article  CAS  PubMed  Google Scholar 

  23. Cui CH, Uyama T, Miyado K, Terai M, Kyo S, Kiyono T, Umezawa A. Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007;18:1586–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril. 2004;81(2):403–7.

    Article  CAS  PubMed  Google Scholar 

  25. Götte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schüring AN, Kiesel L. Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol. 2008;215:317–29.

    Article  PubMed  Google Scholar 

  26. Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol. 2009;174:715–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Díaz-Flores Jr L, Madrid JF, Gutiérrez R, Varela H, Valladares F, Alvarez-Argüelles H, Díaz-Flores L. Adult stem and transit-amplifying cell location. Histol Histopathol. 2006;21:995–1027.

    PubMed  Google Scholar 

  28. Hartman CG. Regeneration of the monkey uterus after surgical removal of the endometrium and accidental endometriosis. West J Surg Obstet Gynecol. 1944;52:87–102.

    Google Scholar 

  29. Padykula HA, Coles LG, McCracken JA, King Jr NW, Longcope C, Kaiserman-Abramof IR. A zonal pattern of cell proliferation and differentiation in the rhesus endometrium during the estrogen surge. Biol Reprod. 1984;31:1103–18.

    Article  CAS  PubMed  Google Scholar 

  30. Tresserra F, Grases P, Ubeda A, Pascual MA, Grases PJ, Labastida R. Morphological changes in hysterectomies after endometrial ablation. Hum Reprod. 1999;14:1473–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JY, Tavare S, Shibata D. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci U S A. 2005;102:17739–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tanaka M, Kyo S, Kanaya T, Yatabe N, Nakamura M, Maida Y, Okabe M, Inoue M. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. Am J Pathol. 2003;163:295–301.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Eng C. Changes in endometrial PTEN expression throughout the human menstrual cycle. J Clin Endocrinol Metab. 2000;85:2334–8.

    CAS  PubMed  Google Scholar 

  34. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–50.

    Article  CAS  PubMed  Google Scholar 

  35. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84 Suppl 2:1124–30.

    Article  CAS  PubMed  Google Scholar 

  36. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Greve B, Kelsch R, Spaniol K, Eich HT, Götte M. Flow cytometry in cancer stem cell analysis and separation. Cytometry A. 2012;81:284–93.

    Article  PubMed  Google Scholar 

  38. Yokoyama Y, Takahashi Y, Morishita S, Hashimoto M, Niwa K, Tamaya T. Telomerase activity in the human endometrium throughout the menstrual cycle. Mol Hum Reprod. 1998;4:173–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214–23.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90(4 Suppl):1528–37.

    Article  PubMed  Google Scholar 

  41. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura Y, Maruyama T, Okano H. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5:e10387.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cervelló I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT, Critchley HO, Simón C. Reconstruction of endometrium from human endometrial side population cell lines. PLoS One. 2011;6:e21221.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Masuda H, Anwar SS, Bühring HJ, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012;21:2201–14.

    Article  PubMed  Google Scholar 

  44. Schüring AN, Schulte N, Kelsch R, Röpke A, Kiesel L, Götte M. Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil Steril. 2011;95:423–6.

    Article  PubMed  Google Scholar 

  45. Götte M, Wolf M, Staebler A, Buchweitz O, Kiesel L, Schüring AN. Aberrant expression of the pluripotency marker SOX-2 in endometriosis. Fertil Steril. 2011;95:338–41.

    Article  PubMed  Google Scholar 

  46. Matthai C, Horvat R, Noe M, Nagele F, Radjabi A, van Trotsenburg M, Huber J, Kolbus A. Oct-4 expression in human endometrium. Mol Hum Reprod. 2006;12:7–10.

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen HP, Sprung CN, Gargett CE. Differential expression of Wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinology. 2012;153:2870–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–11.

    Article  CAS  PubMed  Google Scholar 

  49. Cervelló I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, Martínez-Romero A, Martínez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simón C. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5:e10964.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.

    Article  CAS  PubMed  Google Scholar 

  51. Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M, Nakao S, Inoue M. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201(608):e1–8.

    PubMed  Google Scholar 

  52. Cervelló I, Gil-Sanchis C, Mas A, Faus A, Sanz J, Moscardó F, Higueras G, Sanz MA, Pellicer A, Simón C. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS One. 2012;7:e30260.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Prianishnikov VA. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception. 1978;18:213–23.

    Article  CAS  PubMed  Google Scholar 

  54. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–6.

    Article  CAS  PubMed  Google Scholar 

  55. Becker CM, Beaudry P, Funakoshi T, Benny O, Zaslavsky A, Zurakowski D, Folkman J, D’Amato RJ, Ryeom S. Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am J Pathol. 2011;178:1782–91.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Chan RW, Ng EH, Yeung WS. Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. Am J Pathol. 2011;178:2832–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lemieux C, Cloutier I, Tanguay JF. Menstrual cycle influences endothelial progenitor cell regulation: a link to gender differences in vascular protection. Int J Cardiol. 2009;136:200–10.

    Article  PubMed  Google Scholar 

  58. Elsheikh E, Sylvén C, Ericzon BG, Palmblad J, Mints M. Cyclic variability of stromal cell-derived factor-1 and endothelial progenitor cells during the menstrual cycle. Int J Mol Med. 2011;27:221–6.

    Article  PubMed  Google Scholar 

  59. Bairagi S, Gopal J, Nathan AA, Babu SS, Kumar NP, Dixit M. Glucose-induced increase in circulating progenitor cells is blunted in polycystic amenorrhoeic subjects. Hum Reprod. 2012;27:844–53.

    Article  CAS  PubMed  Google Scholar 

  60. Rousseau A, Ayoubi F, Deveaux C, Charbit B, Delmau C, Christin-Maitre S, Jaillon P, Uzan G, Simon T. Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects. Fertil Steril. 2010;93:843–6.

    Article  PubMed  Google Scholar 

  61. Dincer S. Collection of hemopoietic stem cells in allogeneic female donors during menstrual bleeding. Transfus Apher Sci. 2004;30:175–6.

    Article  PubMed  Google Scholar 

  62. Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min WP, Woods EJ, Reid M, Mansilla E, Marin GH, Drago H, Murphy MP, Minev B. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med. 2009;7:15.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Phuc PV, Lam DH, Ngoc VB, Thu DT, Nguyet NT, Ngoc PK. Production of functional dendritic cells from menstrual blood – a new dendritic cell source for immune therapy. In Vitro Cell Dev Biol Anim. 2011;47:368–75.

    Article  PubMed  Google Scholar 

  64. Chang HC, Jones OW, Masui H. Human amniotic fluid cells grown in a hormone-supplemented medium: suitability for prenatal diagnosis. Proc Natl Acad Sci U S A. 1982;79:4795–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  66. Khanmohammadi M, Khanjani S, Bakhtyari MS, Zarnani AH, Edalatkhah H, Akhondi MM, Mirzadegan E, Kamali K, Alimoghadam K, Kazemnejad S. Proliferation and chondrogenic differentiation potential of menstrual blood- and bone marrow-derived stem cells in two-dimensional culture. Int J Hematol. 2012;95:484–93.

    Article  PubMed  Google Scholar 

  67. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19:2065–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Li HY, Chen YJ, Chen SJ, Kao CL, Tseng LM, Lo WL, Chang CM, Yang DM, Ku HH, Twu NF, Liao CY, Chiou SH, Chang YL. Induction of insulin-producing cells derived from endometrial mesenchymal stem-like cells. J Pharmacol Exp Ther. 2011;335:817–29.

    Article  Google Scholar 

  69. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med. 2011;15:747–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH. Allogeneic endometrial regenerative cells: an “Off the shelf solution” for critical limb ischemia? J Transl Med. 2008;6:45.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ikegami Y, Miyoshi S, Nishiyama N, Hida N, Okamoto K, Miyado K, Segawa K, Ogawa S, Umezawa A. Serum-independent cardiomyogenic transdifferentiation in human endometrium-derived mesenchymal cells. Artif Organs. 2010;34:280–8.

    Article  PubMed  Google Scholar 

  72. Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J Immunol. 2011;186:1325–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. Int J Cancer. 2001;94:459–73.

    Article  CAS  PubMed  Google Scholar 

  74. Miniño AM, Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2008. Natl Vital Stat Rep. 2011;59:1–126.

    Google Scholar 

  75. Rodrigues MC, Glover LE, Weinbren N, Rizzi JA, Ishikawa H, Shinozuka K, Tajiri N, Kaneko Y, Sanberg PR, Allickson JG, Kuzmin-Nichols N, Garbuzova-Davis S, Voltarelli JC, Cruz E, Borlongan CV. Toward personalized cell therapies: autologous menstrual blood cells for stroke. J Biomed Biotechnol. 2011;2011:194720.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Rodrigues MC, Voltarelli J, Sanberg PR, Allickson JG, Kuzmin-Nichols N, Garbuzova-Davis S, Borlongan CV. Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev. 2012;36:177–90.

    Article  PubMed  Google Scholar 

  77. Wu J, Sun Z, Sun HS, Wu J, Weisel RD, Keating A, Li ZH, Feng ZP, Li RK. Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant. 2008;16:993–1005.

    Article  PubMed  Google Scholar 

  78. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682–8.

    Article  CAS  PubMed  Google Scholar 

  79. Leu S, Lin YC, Yuen CM, Yen CH, Kao YH, Sun CK, Yip HK. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med. 2010;8:63.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Rehni AK, Singh N, Jaggi AS, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res. 2007;183:95–100.

    Article  CAS  PubMed  Google Scholar 

  81. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ. Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci. 1997;17:4341–8.

    CAS  PubMed  Google Scholar 

  83. Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J Neurosci. 2006;26:12497–511.

    Article  CAS  PubMed  Google Scholar 

  84. Allamand V, Campbell KP. Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum Mol Genet. 2000;9:2459–67.

    Article  CAS  PubMed  Google Scholar 

  85. Bogdanovich S, Perkins KJ, Krag TO, Khurana TS. Therapeutics for Duchenne muscular dystrophy: current approaches and future directions. J Mol Med. 2004;82:102–15.

    Article  PubMed  Google Scholar 

  86. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Rutherford RB, TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease. Int Angiol. 2007;26:81–157.

    CAS  PubMed  Google Scholar 

  87. Setacci C, de Donato G, Teraa M, Moll FL, Ricco JB, Becker F, Robert-Ebadi H, Cao P, Eckstein HH, De Rango P, Diehm N, Schmidli J, Dick F, Davies AH, Lepäntalo M, Apelqvist J. Chapter IV: treatment of critical limb ischaemia. Eur J Vasc Endovasc Surg. 2011;42 Suppl 2:S43–59.

    Article  PubMed  Google Scholar 

  88. Attanasio S, Snell J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev. 2009;17:115–20.

    Article  PubMed  Google Scholar 

  89. Murphy MP, Lawson JH, Rapp BM, Dalsing MC, Klein J, Wilson MG, Hutchins GD, March KL. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg. 2011;53:1565–74.e1.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Sprengers RW, Lips DJ, Moll FL, Verhaar MC. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg. 2008;247:411–20.

    Article  PubMed  Google Scholar 

  91. Park JH, Daheron L, Kantarci S, Lee BS, Teixeira JM. Human endometrial cells express elevated levels of pluripotent factors and are more amenable to reprogramming into induced pluripotent stem cells. Endocrinology. 2011;152:1080–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet. 2011;7:e1002085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Gonzales C, Pedrazzini T. Progenitor cell therapy for heart disease. Exp Cell Res. 2009;315:3077–85.

    Article  CAS  PubMed  Google Scholar 

  94. Infante-Duarte C, Waiczies S, Wuerfel J, Zipp F. New developments in understanding and treating neuroinflammation. J Mol Med. 2008;86:975–85.

    Article  CAS  PubMed  Google Scholar 

  95. Soo ET, Ng YK, Bay BH, Yip GW. Heat shock proteins and neurodegenerative disorders. Sci World J. 2008;8:270–4.

    Article  CAS  Google Scholar 

  96. Blondheim NR, Levy YS, Ben-Zur T, Burshtein A, Cherlow T, Kan I, Barzilai R, Bahat-Stromza M, Barhum Y, Bulvik S, Melamed E, Offen D. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev. 2006;15:141–64.

    Article  CAS  PubMed  Google Scholar 

  97. Scherbaum WA, Seissler J. Cellular and humoral autoimmunity in insulin-dependent diabetes mellitus. Exp Clin Endocrinol Diabetes. 1995;103 Suppl 2:88–94.

    Article  PubMed  Google Scholar 

  98. Ryan EA, Lakey JR, Paty BW, Imes S, Korbutt GS, Kneteman NM, Bigam D, Rajotte RV, Shapiro AM. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes. 2002;51:2148–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Original work in the author’s laboratory on the topic of the review is financially supported by a Bayer Focus grant (to M.G.) and a scholarship from DIKTI/Tanjung Pura University, Indonesia (N.A.). M.G. is a member of the Stem Cell Network North Rhine-Westphalia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Götte MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Achmad, N., Götte, M. (2015). Characteristics and Therapeutic Potential of Menstrual Blood-Derived Stem Cells. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics