Skip to main content
Log in

Heat shock proteins: Changes related to aging, development of thrombotic complications, and peptide regulation of the genome

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The present review of published data and the authors’ own results addresses the role of heat shock proteins in the regulation of cell and tissue homeostasis and considers the decrease in their expression levels as one of the main factors of aging. Heat shock proteins are involved in the regulation of proliferation, apoptosis, and differentiation of cells, as well as in that of intracellular homeostasis, and, therefore, play a substantial role in maintaining the activity of the immune, cardiovascular, and other systems of the organism. These proteins are also implied in the development of atherosclerosis, myocardial infarction, ischemic stroke, and other diseases accompanied by thrombotic complications. The use of short peptides provides an opportunity to restore and normalize the expression of heat shock proteins, which probably accounts for the antistress and geroprotective activity of these peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekperov, E.A., Shustova, O.A., and Sapozhnikov, A.M., Change of HSP70 Concentration in the Cells of EL-4b Lymphoma at Oxidative Stress, Med. Immunologiya, 2007, nos. 2–3, pp. 113–114.

  2. Drapkina, O.M., Synthesis Peculiarities of Heat Shock Proteins in Patients with Postinfarct Cardiosclerosis, Klin. Med., 2004, no. 9, pp. 25–28.

  3. Zadionchenko, V.S., Leksina, K.S., Timofeeva, N.Yu., et al., Influence of Inhibitor of Angiotensin-Transforming Enzyme on Oxidative Stress and Functionality of Endothelium in Patients with Myocardium Infarction, Kardiologiya, 2009, nos. 7–8, pp. 32–37.

  4. Ivashkin, V.T. and Drapkina, O.M., Clinical Applicability of Nitrogen Oxide and Heat Shock Proteins, Internet Article, 2006.

  5. Ketlinskii, S.A. and Simbirtsev, A.S., Tsitokiny (The Cytokines), St. Petersburg: Foliant, 2008.

    Google Scholar 

  6. Kuznik, B.I., Coagulability of Lymph and Tissue Liquid, in Osnovy obshcheklinicheskoi limfologii i endoekologii (Principles of General Clinical Lymphology and Endocrinology), Moscow, 2003, pp. 92–107.

  7. Kuznik, B.I., Protective and Pathological Role of Tissue Agent and Serine Proteinases at Hypercoagulation and DIC-Syndrome, in Problemy patologii sistemy gemostaza (The Problems of Hemostasis System Pathology), Barnaul, 2007, pp. 99–111.

  8. Kuznik, B.I., THS, DIC or Super-Hypocoagulation Syndrome, Probl. Klin. Med., 2009, no. 2, pp. 74–91.

  9. Kuznik, B.I., Kletochnye i molekulyarnye mekhanizmy regulyatsii sistemy gemostaza v norme i patologii (Cellular and Molecular Regulation of Hemostasis System in Normal and Pathologic States), Chita: Ekspress-Izdat., 2010.

    Google Scholar 

  10. Kuznik, B.I., Likhanov, I.D., Tsepelev, V.L., and Sizonenko, V.A., Teoreticheskie i klinicheskie aspekty bioreguliruyushchei terapii v khirurgii i travmatologii (Theoretical and Clinical Aspects of Bioregulating Therapy in Surgery and Traumatology), Novosibirsk: Nauka, 2008.

    Google Scholar 

  11. Levin, Yu.M., Novyi uroven’ lecheniya i ozdorovleniya (New Level of Treatment and Recovery), Moscow, 2008.

  12. Lin’kova, N.S., Polyakova, V.O., Trofimov, A.V., et al., Peptidergic Regulation of Differentiation, Proliferation and Apoptosis of Thymocytes at Senescence of Thymus, Byul. Eksper. Biol., 2011, vol. 151, no. 2, p. 203.

    Google Scholar 

  13. Margulis, B.A. and Gushchina, I.V., Stress Proteins, Tsitologiya, 2000, no. 4, pp. 323–342.

  14. Meerson, F.Z. and Malyshev, I.Yu., Fenomen adaptatsionnoi stabilizatsii struktur i zashchita serdtsa (Phenomenon of Adaptive Stabilization of the Structure and Heart Protection), Moscow: Nauka, 1993.

    Google Scholar 

  15. Nagornev, V.A., Pigarevskii, P.V., and Mal’tseva, S.V., Chaperones and Their Role at Atherosclerosis, Vestn. Ross. Akad. Med. Nauk, 2008, no. 1, pp. 41–45.

  16. Nazarov, V.A., Kruglov, S.P., Khomenko, I.P., et al., Inversion of Phenomenon of Reprogramming of Stress-Response at Lipopolysaccharide-Stimulated Alveolar Macrophages, Byul. Eksper. Biol., 2007, no. 10, pp. 387–390.

  17. Ostrov, V.F., Slashcheva, G.A., Evgen’ev, M.B., and Murashev, A.N., Protective Action of Recombinant Human HSP70 on the Hemostasis System at Simulation of Sepsis in Rats, in IV Vseros. konferentsiya “Klinicheskaya gemostaziologiya i gemoreologiya v serdechnososudistoi khirurgii” (The IV All-Russian Conference on Clinical Hemostasis and Hemorheology in Cardiovascular Surgery), Moscow, 2009, pp. 368–369.

  18. Pshenichnikova, M.G., Zelenina, O.M., Kruglov, S.V., et al., Synthesis of Heat Shock Proteins (HSP) in Blood Leucocytes as the Parameter of Stability to Stress Damages, Byul. Eksper. Biol., 2006, no. 12, pp. 614–617.

  19. Sakharov, D.A., Stepanov, A.V., Shkurikov, M.Yu., and Tonevitskii, A.G., Short Highly Intensive Physiological Stress Causes Enhancement of Heat Shock Protein Expression in Human Leukocytes, Byul. Eksper. Biol., 2009, no. 3, pp. 335–336.

  20. Severin, S.E., Posypanova, G.A., and Moskaleva, E.Yu., Development of New Approaches to Cancer Treatment Using Preparations of Directional Effect and Vaccines Based on Heat Shock Protein rHsp70, Mol. Biol., 2008, no. 4, pp. 9–17.

  21. Tatenkulova, S.N., Mareev, V.Yu., Zykov, K.A., and Belenkov, Yu.N., A Role of Humoral Inflammatory Factors in Pathogenesis of Heart Ischemia, Kardiol., 2009, no. 1, pp. 4–8.

  22. Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Senescence), St. Petersburg: Nauka, 2009.

    Google Scholar 

  23. Khavinson, V.Kh., Anisimov, S.V., Malinin, V.V., and Anisimov, V.N., Peptidnaya regulyatsiya genoma i starenie (Peptide Regulation of Genome and Senescence), Moscow: Izd. RAMN, 2005.

    Google Scholar 

  24. Khavinson, V.Kh., Lin’kova, N.S., Polyakova, V.O., et al., Age Dynamics of Differentiation of Immune Cells of Human Thymus, Byul. Eksper. Biol., 2011, vol. 151, no. 5, pp. 569–572.

    Google Scholar 

  25. Khavinson, V.Kh., Lin’kova, N.S., Trofimov, A.V., et al., Morphological and Functional Principles of Peptide Regulation of Senescence, Usp. Sovrem. Biol., 2011, vol. 131, no. 2, p. 115.

    CAS  Google Scholar 

  26. Khama-Murad, A.Kh., Pavlinova, L.I., and Mokrushin, A.A., Hemorrhagic Stroke: Molecular Mechanisms of Pathogenesis and Perspective Therapeutic Targets, Usp. Fiziol. Nauk, 2008, no. 3, pp. 45–65.

  27. Shilova, V.Yu., Garbuz, D.G., Evgen’ev, M.B., and Zatsepina, O.G., Low-Molecular Heat Shock Proteins and Adaptation to Hyperthermia in Different Species of Drosophila, Mol. Biol., 2006, no. 2, pp. 271–276.

  28. Shoikhet, Ya.N. and Momot, A.P., On Role of Relation Between Hemostatic and Inflammatory Reactions in Formation of Nidus of Purulent Destruction of Organs and Tissues, Probl. Klin. Med., 2008, no. 4, pp. 102–117.

  29. Adewoye, A.H., Kings, E.S., Farber, H.W., et al., Sickle Cell Vasoocclusive Crisis Induces the Release of Circulating Serum Heat Shock Protein-70, Amer. J. Hemat., 2005, no. 3, pp. 240–242.

  30. Aken, B.E., Reitsma, P.H., and Rosendaal, F.R., Interleukin 8 and Venous Thrombosis: Evidence for a Role of Inflammation in Thrombosis, J. Haemat., 2002, vol. 116, no. 1, pp. 173–177.

    Article  Google Scholar 

  31. Anisimov, V.N. and Khavinson, V.Kh., Peptide Bioregulation of Aging: Results and Prospects, Biogerontology, 2010, vol. 11, p. 139.

    Article  PubMed  CAS  Google Scholar 

  32. Asea, A., Kabingu, E., Stevenson, M.A., and Calderwood, S.K., HSP70 Peptidembearing and Peptide-Negative Ppreparations Act as Chaperokines, Cell Stress Chaperones, 2000, vol. 5, no. 5, pp. 425–431.

    Article  PubMed  CAS  Google Scholar 

  33. Bae, J.S. and Rezaie, A.R., Thrombin Up-Regulates the Angiopoietin/Tie2 Axis: EPCR Occupancy Prevents the Thrombin Mobilization of Angiopoietin2 and P-Selectin from Weibel-Palade Bodies, J. Thrombosis and Haemost., 2010, vol. 8, no. 5, pp. 1107–1115.

    CAS  Google Scholar 

  34. Basha, E., Jones, C., Wysocki, V., and Vierling, E., Mechanistic Differences Between Two Conserved Classes of Small Heat Shock Proteins Found in the Plant Cytosol, J. Biol. Chem., 2010, vol. 285, no. 15, pp. 11489–11497.

    Article  PubMed  CAS  Google Scholar 

  35. Berliner, J.A., Territo, M.C., Sevanian, A., et al., Minimally Modified Low Density Lipoprotein Stimulates Monocyte Endothelial Interactions, J. Clin. Invest., 1990, vol. 85, no. 4, pp. 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  36. Bernando, A., Ball, C., Nolasco, L., et al., Effect of Inflammatory Cytokines on the Release and Cleavage of the Endothelial Cell-Derived Ultra Large von Willebrand Factor Multimers Under Flow, Blood, 2004, vol. 104, pp. 100–106.

    Article  Google Scholar 

  37. Binder, R.J., Han, D.K., and Srivastava, P.K., CD91: A Receptor for Heat Shock Protein Gp96, Nat. Immunol., 2001, vol. 1, no. 2, pp. 151–155.

    Article  Google Scholar 

  38. Bond, J.A., Gonzalez, C.R.M., and Bradley, B.P., Age-Dependent Expression of Proteins in the Cladoceran Daphnia magna under Normal and Heat-Stress Conditions, Comp. Biochem. Physiol., 1993, vol. 106, pp. 913–917.

    Google Scholar 

  39. Burian, K., Kis, Z., Virok, D., et al., Independent and Joint Effects of Antibodies to Human Heat-Shock Protein 60 and Chlamydia pneumonia Infection in the Development of Coronary Atherosclerosis, Circulation, 2001, vol. 103, no. 11, pp. 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  40. Chang, Y.W., Sun, Y.J., Wang, C., and Hsiao, C.D., Crystal Structures of the 70 Heat Shock Proteins in Domain Disjoining Conformation, J. Biol. Chem., 2008, vol. 283, pp. 15502–15511.

    Article  PubMed  CAS  Google Scholar 

  41. Dillmann, W.H. and Mestril, R., Heat Shock Proteins in Myocardial Stress, J. Kardiol., 1995, vol. 84, suppl. 4, pp. 87–90.

    Google Scholar 

  42. Dieude, M., Gillis, M.A., and Theoret, J.F., Autoantibodies to Heat Shock Protein 60 Promote Thrombus Formation in a Murine Model of Arterial Thrombosis, J. Thromb. Haemost., 2009, vol. 7, no. 4, pp. 710–719.

    Article  PubMed  CAS  Google Scholar 

  43. Fung, K.L., Hilgenberg, L., Wang, N.M., and Chiroco, W.J., Conformations of the Nucleotide and Polypeptide Binding Domains of a Cytosolic Hsp70 Molecular Chaperones Are Couple, J. Biol. Chem., 1996, no. 35, pp. 21559–21565.

  44. Hartl, F.U., Molecular Chaperones in Cellular Protein Folding, Nature, 1996, vol. 381, no. 6583, pp. 571–580.

    Article  PubMed  CAS  Google Scholar 

  45. Haslbeck, M., Franzmann, T., Weinfurtner, D., and Buchner, J., Some Like It Hot: The Structure and Function of Small Heat-Shock Proteins, Nat. Structural Mol. Biol., 2005, vol. 12, no. 10, pp. 842–846.

    Article  CAS  Google Scholar 

  46. Hedman, A., Larson, P.T., Alam, M., et al., CRP, IL-6 and Endothelin-1 Levels in Patients Undergoing Coronary Artery Bypass Grafting, J. Cardiol., 2007, vol. 120, pp. 108–114.

    Google Scholar 

  47. Hooven, T.A., Yamamoto, Y., and Jeffer, W.R., Bing Cavefish and Heat Shock Protein Chaperones: A Novel Role HSP90a in Lens Apoptosis, Int. J. Dev. Biol., 2004, vol. 48, no. 3, pp. 731–738.

    Article  PubMed  CAS  Google Scholar 

  48. Khavinson, V.Kh., Peptides and Aging, Neuroendocr. Lett., Special Issue, 2002.

  49. Khavinson, V.Kh. and Malinin, V.V., Gerontological Aspects of Genome Peptide Regulation, Basel: Karger AG, 2005.

    Google Scholar 

  50. Khavinson, V.Kh., Fedoreeva, L.I., and Vanyshin, B.F., Short Peptides Modulate the Effect of Endonucleases of Wheat Seedling, Biochem. Biophys. Mol. Biol., 2011, vol. 437, no. 1, p. 124.

    Google Scholar 

  51. Kleemann, R., Zadelaar, S., and Kooistra, T., Cytokines and Atherosclerosis: A Comprehensive Review of Studies in Mice, Cardiovasc. Res., 2008, vol. 79, no. 3, pp. 360–376.

    Article  PubMed  CAS  Google Scholar 

  52. Kozawa, O., Matsuno, H., Niwa, M., et al., HSP20, Low-Molecular-Weight Heat Shock-Related Protein, Acts Extracellularly as a Regulator of Platelet Functions: A Novel Defense Mechanism, Live Sci., 2002, vol. 72, no. 2, pp. 113–124.

    Article  CAS  Google Scholar 

  53. Kuppusvamy, V.C. and Gupta, S., Antibiotic Therapy for Coronary Heart Disease, Drugs Today (Barc.), 2005, vol. 41, no. 10, pp. 677–685.

    Article  Google Scholar 

  54. Kuznik, B.I. and Tsybikov, N.N., Cytokines, Immunoglobulins and Hemostasis, Hematol. Rev., 1996, vol. 7, pp. 43–70.

    Google Scholar 

  55. Lee, Y.K., Manalo, D., and Liu, A.Y., Heat Shock Response, Heat Shock Transcript HEAT-Tion Factor and Cell Aging, Biol. Signals, 1996, no. 5, pp. 180–191.

  56. Leinonen, N. and Saikkcu, P., Evidence for Infectious Agents in Cardiovascular Disease and Atherosclerosis, Lancet Infect. Dis., 2002, no. 2, pp. 11–17.

  57. Libbi, P., Suchova, G., Lee, R.T., and Galis, S.Z., Cytokines Regulate Vascular Functions Related to Stability of the Atherosclerotic Plaque, J. Cardiovasc. Pharm., 1995, vol. 25, no. 4, pp. 710–719.

    Google Scholar 

  58. Lithgow, G.J., White, T.M., Hinerfeld, D.A., and Johnson, T.E., Thermotolerance of a Long-Lived Mutant of Caenorhabditiselegans, J. Geront., 1994, vol. 49B, pp. 270–276.

    Google Scholar 

  59. Lithgow, G.J., Invertebrate Gerontology: The Age Mutations of Caenorhabditiselegans, Bio Essays, 1996, vol. 18, pp. 809–815.

    CAS  Google Scholar 

  60. Lindquist, S. and Craig, E.A., The Heat-Shock Proteins, Annu. Rev. Genet., 1988, vol. 22, pp. 631–677.

    Article  PubMed  CAS  Google Scholar 

  61. Lu, Q., Wallrath, L.L., Granok, H., and Elgin, S.C., Expression of Heat Shock Protein 70 is Altered by Age and Diet at the Level of Transcription, Mol. Cell Biol., 1993, vol. 13, pp. 2909–2918.

    Google Scholar 

  62. Luis, M.J., Valentin, N., Havier, H., et al., Biological Significance of Decreased HSP27 in Human Atherosclerosis, Atheroscler. Thromb. Vasc. Biol., 2006, no. 6, pp. 1337–1343.

  63. Marin, R., Valet, J.P., and Tanguay, R.M., Heat Shock Induces Changes in the Expression and Binding of Ubiquitin in Senescent Drosophila Melanogaster, Dev. Genet., 1993, vol. 14, pp. 78–86.

    Article  Google Scholar 

  64. Metzler, B., Abia, R., Ahmad, M., et al., Activation of Heat Shock Transcription Factor 1 in Atherosclerosis, Am. J. Pathol., 2003, vol. 162, no. 5, pp. 1669–1676.

    Article  PubMed  CAS  Google Scholar 

  65. Moutsopoulos, N.M. and Madianos, P.N., Low-Grade Inflammation in Chronic Infectious Diseases: Paradigm of Periodontal Infections, Ann. N.Y. Acad. Sci., 2006, vol. 1088, pp. 251–264.

    Article  PubMed  CAS  Google Scholar 

  66. Njemini, R., Lambert, M., Demanet, C.H., and Mets, T., Heat Shock Protein 32 in Human Peripheral Blood Mononuclear Cells: Effect of Aging and Inflammation, J. Clin. Immunol., 2005, vol. 25, no. 5, pp. 405–417.

    Article  PubMed  CAS  Google Scholar 

  67. Pearl, L.H. and Prodromou, C., Structure and Mechanism of the Hsp90 Molecular Chaperone Machinery, Ann. Rev. Biochem., 2006, vol. 75, pp. 271–294.

    Article  PubMed  CAS  Google Scholar 

  68. Perschinka, H., Mayr, M., Millonig, G., et al., Cross-Reactive B-Cell Epitopes of Microbial and Human Heat Shock Protein 60/65 in Atherosclerosis, Atheroscler. Thromb. Vasc. Biol., 2003, vol. 23, no. 6, pp. 1060–1065.

    Article  CAS  Google Scholar 

  69. Pockley, A.G., Heat Shock Proteins as Regulation of the Immune Response, Lancet, 2003, vol. 362, pp. 469–476.

    Article  PubMed  CAS  Google Scholar 

  70. Polyakova, V.O., Linkova, N.S., and Pichugin, S.A., Dynamics of Apoptosis and Proliferation of Pineal Gland Cells of in Aging, Bull. Exp. Biol. Med., 2010, vol. 150, no. 4, p. 468.

    Article  Google Scholar 

  71. Ranford, J.C. and Henderson, B., Chaperonins in Disease: Mechanisms, Models, and Treatments, Mol. Pathol., 2002, vol. 55, no. 4, pp. 209–213.

    Article  PubMed  CAS  Google Scholar 

  72. Schett, G., Xu, Q., and Amberger, A., Auto Antibodies against Heat Shock Protein 60 Mediate Endothelial Cytotoxicity, J. Clin. Invest., 1995, no. 6, pp. 2569–2577.

  73. Shams, S., Shafi, S., Bodman-Smith, K., et al., Anti-Heat Shock Protein-27 (Hsp-27) Antibody Levels in Patients with Pain: Association with Established Cardiovascular Risk Factors, Clin. Chim. Acta, 2008, vol. 395, nos. 1–2, pp. 42–46.

    Article  PubMed  CAS  Google Scholar 

  74. Sharp, F.R. and Sagar, S.M., Alterations in Gene Expression as an Index of Neuronal Injury: Heat Shock and the Immediate Early, Neurotoxicology, 1994, vol. 15, no. 1, pp. 51–59.

    PubMed  CAS  Google Scholar 

  75. Szotowski, B., Antoniak, S., Poller, W., et al., Procoagulant Soluble Tissue Factor is Released from Endothelial Cells in Response to Inflammatory Cytokines, Cir. Res., 2005, vol. 96, no. 12, pp. 1233–1239.

    Article  CAS  Google Scholar 

  76. Sharp, F.R. and Sagar, S.M., Alterations in Gene Expression as an Index of Neuronal Injury, Neurotoxicology, 1994, no. 1, pp. 51–59.

  77. Tatar, M., Khazaeli, A.A., and Curtsinger, J.W., Chaperoning Extended Life, Nature, 1997, vol. 390, p. 30.

    Article  PubMed  CAS  Google Scholar 

  78. Tissieres, A., Mitchell, H.K., and Tracy, U.M., Protein Synthesis in Salivary Glands of Drosophila melanogaster, J. Mol. Biol., 1974, vol. 84, no. 3, pp. 389–398.

    Article  PubMed  CAS  Google Scholar 

  79. Welch, W.G. and Suhan, J.P., Cellular and Biochemical Events in Mammalian Cells during and after Recovery from Physiological Stress, J. Cell Biol., 1986, vol. 103, pp. 2035–2052.

    Article  PubMed  CAS  Google Scholar 

  80. Wheeler, J.C., Bieschke, E.T., and Tower, J., Muscle-Specific Expression of Drosophila Hsp70 in Response to Aging and Oxidative Stress, Proc. Nat. Acad. Sci. USA, 1995, vol. 92, pp. 10408–10412.

    Article  PubMed  CAS  Google Scholar 

  81. Wick, G., Knoflach, M., and Xu, Q., Autoimmune and Inflammatory Mechanisms in Atherosclerosis, Ann. Rev. Immunol., 2004, vol. 22, pp. 361–403.

    Article  CAS  Google Scholar 

  82. Xing, J., Xu, Y., Tian, J.T., et al., Suppression of Shade- or Heat-Induced Leaf Senescence in Creeping Bentgrass through Transformation with the Ipt Gene for Cytokinin Synthesis, J. Amer. Soc. Horticultural Sci., 2009, vol. 134, no. 6, pp. 602–609.

    Google Scholar 

  83. Xu, Y., Lupu, F., and Esmon, C.T., Inflammation, Innate Immunity and Blood Coagulation, Hamostaseologie, 2010, vol. 30, no. 1, pp. 5–9.

    PubMed  CAS  Google Scholar 

  84. Xu, Q., Role of Heat Shock Proteins in Atherosclerosis, Thrombos. Vasc. Biol., 2002, vol. 22, pp. 1547–1549.

    Article  CAS  Google Scholar 

  85. Xu, Q., Infections, Heat Shock Proteins, and Atherosclerosis, Curr. Opin. Cardiol., 2003, no. 4, pp. 245–252.

  86. Xu, Q. and Wick, G., The Role of Heat Shock Proteins in Protection and Pathophysiology of the Arterial Wall, Mol. Med. Today, 1996, no. 2, pp. 372–379.

  87. Zhao, R. and Houry, W.A., Hsp90: A Chaperone for Protein Folding and Gene Regulation, Biochem. Cell Biol., 2005, vol. 83, no. 6, pp. 703–710.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Kuznik.

Additional information

Original Russian Text © B.I. Kuznik, N.S. Lin’kova, V.Kh. Khavinson, 2011, published in Uspekhi Gerontologii, 2011, Vol. 24, No. 4, pp. 539–552.

A review of published data and the authors’ own results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznik, B.I., Linkova, N.S. & Khavinson, V.K. Heat shock proteins: Changes related to aging, development of thrombotic complications, and peptide regulation of the genome. Adv Gerontol 2, 175–186 (2012). https://doi.org/10.1134/S2079057012030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057012030071

Keywords

Navigation