Skip to main content
Log in

Bending Rigidity of Branched Polymer Brushes with Finite Membrane Thickness

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Nanomechanical properties and, in particular, the bending rigidity of natural and artifficial nanomembranes can be strongly affected by anchored or tethered macromolecules. We present the theory of the induced bending rigidity of polymer brushes symmetrically tethered to both surfaces of the membrane and immersed into the solvent. In contrast to previous works the finite thickness of the membrane was taken into account. The analytical and numerical variants of the self-consistent field approach were used. The mean and Gaussian Helfrich’s bending moduli as functions of the polymerization degree, branching parameter and grafting density of tethered macromolecules were determined both for good and theta solvent conditions. It was shown that the absolute values of the Helfrich’s bending moduli increase with the membrane thickness. The increase of the thickness leads also to the change of the relation between moduli for branched and linear brushes at the same polymerization degree and grafting density. For thin membranes the bending moduli for brushes with linear chains exceed those for branched brushes. However by an increase of the «bare» membrane thickness the moduli for brushes with branched macromolecules can become equal and even exceed those for brushes consisting of their linear analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Juliano and D. Stamp, Biochem. Biophys. Res. Commun. 63, 651 (1975).

    Article  CAS  Google Scholar 

  2. T. Allen and P. Cullis, Adv. Drug Delivery Rev. 65, 36 (2013).

    Article  CAS  Google Scholar 

  3. T. Allen and C. Hansen, Biochim. Biophys. Acta, Biomembr. 1068, 133 (1991).

    Article  CAS  Google Scholar 

  4. D. Lasic and D. Needham, Chem. Rev. 95, 2601 (1995).

    Article  CAS  Google Scholar 

  5. L. van Vlerken, T. Vyas, and M. Amiji, Pharm. Res. 24, 1405 (2007).

    Article  CAS  Google Scholar 

  6. D. Wilms, S. Stiriba, and H. Frey, Acc. Chem. Res. 43, 129 (2010).

    Article  CAS  Google Scholar 

  7. A. M. Hofmann, F. Wurm, E. Huhn, T. Nawroth, P. Langguth, and H. Frey, Biomacromolecules 11, 568 (2010).

    Article  CAS  Google Scholar 

  8. G. Kasza, G. Kali, A. Domjan, L. Petho, G. Szarka, and B. Ivan, Macromolecules 50, 3078 (2017).

    Article  CAS  Google Scholar 

  9. K. Wagener, M. Worm, S. Pektor, M. Schinnerer, R. Thiermann, M. Miederer, H. Frey, and F. Rösch, Biomacromolecules 19, 2506 (2018).

    Article  CAS  Google Scholar 

  10. C. Siegers, M. Biesalski, and R. Haag, Chem-Eur. J. 10, 2831 (2004).

    Article  CAS  Google Scholar 

  11. P. Yeh, R. Kainthan, Y. Zou, M. Chiao, and J. N. Kizhakkedathu, Langmuir 24, 4907 (2008).

    Article  CAS  Google Scholar 

  12. R. Schöps, E. Amado, S. Müller, H. Frey, and J. Kressler, Faraday Discuss. 166, 303 (2013).

    Article  Google Scholar 

  13. D. Ernenwein, A. Vartanian, and S. Zimmerman, Macromol. Chem. Phys. 216, 1729 (2015).

    Article  CAS  Google Scholar 

  14. E. Rideau, R. Dimova, P. Schwille, F. Wurm, and K. Landfester, Chem. Soc. Rev. 47, 8572 (2018).

    Article  CAS  Google Scholar 

  15. W. Helfrich and Z. Naturforsch, J. Biosci. 28, 693 (1973).

    CAS  Google Scholar 

  16. M. Carmo, Differential Geometry of Curves and Surfaces (Pearson, Englewood Cliffs, NJ, 1993).

    Google Scholar 

  17. S. Milner and T. Witten, J. Phys. (Paris) 49, 1951 (1988).

    Article  CAS  Google Scholar 

  18. T. Birshtein, P. Iakovlev, V. Amoskov, F. Leermakers, E. Zhulina, and O. Borisov, Macromolecules 41, 478 (2008).

    Article  CAS  Google Scholar 

  19. I. Mikhailov, F. Leermakers, O. Borisov, E. Zhulina, A. Darinskii, and T. Birshtein, Macromolecules 51, 3315 (2018).

    Article  CAS  Google Scholar 

  20. G. Pickett, Macromolecules 34, 8784 (2001).

    Article  CAS  Google Scholar 

  21. E. Zhulina, F. Leermakers, and O. Borisov, Macromolecules 48, 8025 (2015).

    Article  CAS  Google Scholar 

  22. E. Zhulina, F. Leermakers, and O. Borisov, Macromolecules 49, 8758 (2016).

    Article  Google Scholar 

  23. A. N. Semenov, J. Exp. Theor. Phys. 61, 733 (1985).

    Google Scholar 

  24. A. Wijmans and E. Zhulina, Macromolecules 26, 7214 (1993).

    Article  CAS  Google Scholar 

  25. S. Milner, T. Witten, and M. Cates, Macromolecules 21, 2610 (1988).

    Article  CAS  Google Scholar 

  26. E. Zhulina, V. Pryamitsyn, and O. Borisov, Vysokomol. Soedin., Ser. A 31, 205 (1989).

    Google Scholar 

  27. D. Marsh, Biophys. J. 81, 2154 (2001).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 16-13-10485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mikhailov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, I.V., Darinskii, A.A. & Birshtein, T.M. Bending Rigidity of Branched Polymer Brushes with Finite Membrane Thickness. Polym. Sci. Ser. C 64, 110–122 (2022). https://doi.org/10.1134/S1811238222700199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238222700199

Keywords:

Navigation