Skip to main content
Log in

Understanding the stiffness of macromolecules: From linear chains to bottle-brushes

  • Review
  • Specific Models to Tackle Fundamental Questions
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The intrinsic local stiffness of a polymer is characterized by its persistence length. However, its traditional definition in terms of the exponential decay of bond orientational correlations along the chain backbone is accurate only for Gaussian phantom-chain-like polymers. Also care is needed to clarify the conditions when the Kratky-Porod wormlike chain model is applicable. These problems are elucidated by Monte Carlo simulations of simple lattice models for polymers in both d = 2 and d = 3 dimensions. While the asymptotic decay of the bond orientational correlations for real polymers always is of power law form, the Kratky-Porod model is found to be applicable for rather stiff (but not too long) thin polymers in d = 3 (but not in d = 2). However, it does not describe thick chains, e.g., bottle-brush polymers, where stiffness is due to grafted flexible side-chains, and the persistence length grows proportional to the effective thickness of the bottle-brush. A scaling description of bottle-brushes is validated by simulations using the bond fluctuation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969)

  2. A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994)

  3. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford, 2003)

  4. A.M. Donald, A.H. Windle, S. Hanna, Liquid Crystalline Polymers (Cambridge, University Press, Cambridge, 2006)

  5. D.A.D. Parry, E.N. Baker, Rep. Progr. Phys. 47, 1133 (1984)

    Article  ADS  Google Scholar 

  6. M.J. Stevens, K. Kremer, Phys. Rev. Lett. 71, 2228 (1993)

    Article  ADS  Google Scholar 

  7. M.J. Stevens, K. Kremer, Macromolecules 26, 4917 (1993)

    Article  Google Scholar 

  8. B. Dünweg, M.J. Stevens, K. Kremer, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder, 1st edn. (Oxford Univ. Press, New York, 1995), p. 125

  9. M.J. Stevens, K. Kremer, J. Chem. Phys. 103, 1669 (1995)

    Article  ADS  Google Scholar 

  10. U. Micka, K. Kremer, Phys. Rev. E 54, 2653 (1996)

    Article  ADS  Google Scholar 

  11. M.J. Stevens, K. Kremer, J. Phys. II (France) 6, 1607 (1996)

    Article  Google Scholar 

  12. U. Micka, K. Kremer, J. Phys.: Condens. Matter 8, 9463 (1996)

    ADS  Google Scholar 

  13. U. Micka, K. Kremer, Europhys. Lett. 38, 279 (1997)

    Article  ADS  Google Scholar 

  14. O. Kratky, G. Porod, Recl. Trav. Chim. 68, 1106 (1949)

    Article  Google Scholar 

  15. H.-P. Hsu, W. Paul, K. Binder, EPL 92, 28003 (2010)

    Article  ADS  Google Scholar 

  16. H.-P. Hsu, W. Paul, K. Binder, EPL 95, 68004 (2011)

    Article  ADS  Google Scholar 

  17. H.-P. Hsu, K. Binder, J. Chem. Phys. 136, 024901 (2012)

    Article  ADS  Google Scholar 

  18. H.-P. Hsu, W. Paul, K. Binder, Macromolecules 43, 3094 (2010)

    Article  ADS  Google Scholar 

  19. D.W. Schaefer, J.F. Joanny, P. Pincus, Macromolecules 13, 1280 (1980)

    Article  ADS  Google Scholar 

  20. J. Moon, H. Nakanishi, Phys. Rev. A 44, 6427 (1991)

    Article  ADS  Google Scholar 

  21. H.-P. Hsu, W. Paul, K. Binder, Polymer Science, Ser. C 55, 39 (2013)

    Google Scholar 

  22. H.-P. Hsu, W. Paul, K. Binder, Macromol. Theory Simul. 20, 510 (2011)

    Article  Google Scholar 

  23. H.-P. Hsu, P. Grassberger, J. Stat. Phys. 144, 597 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Schäfer, A. Ostendorf, J. Hager, J. Phys A: Math. Gen. 32, 7875 (1999)

    Article  ADS  Google Scholar 

  25. J.C. LeGuillou, J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.P. Wittmer, P. Beckrich, H. Meyer, A. Cavallo, A. Johner, J. Baschnagel, Phys. Rev. E 76, 011803 (2007)

    Article  ADS  Google Scholar 

  27. D. Shirvanyants, S. Panyukov, Q. Liao, M. Rubinstein, Macromolecules 41, 1475 (2008)

    Article  ADS  Google Scholar 

  28. W. Paul, K. Binder, D.W. Heermann, K. Kremer, J. Phys. II (France) 1, 37 (1991)

    Article  Google Scholar 

  29. A. Huang, H.-P. Hsu, A. Bhattacharya, K. Binder, J. Chem. Phys. 143, 243102 (2015)

    Article  ADS  Google Scholar 

  30. T. Norisuye, H. Fujita, Polymer J. 14, 143 (1982)

    Article  Google Scholar 

  31. M. Zhang, A.H.E. Müller, J. Polym. Sci. Part A, Polym. Chem. 43, 3461 (2005)

    Article  Google Scholar 

  32. S.S. Sheiko, B.S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 33, 759 (2008)

    Article  Google Scholar 

  33. J. Klein, Science 323, 47 (2009)

    Article  Google Scholar 

  34. S. Rathgeber, T. Pakula, A. Wilk, K. Matyjaszewski, K.L. Beers, J. Chem. Phys. 122, 124904 (2005)

    Article  ADS  Google Scholar 

  35. B. Zhang, F. Gröhn, J.S. Pedersen, K. Fischer, M. Schmidt, Macromolecules 39, 8440 (2006)

    Article  ADS  Google Scholar 

  36. H.-P. Hsu, W. Paul, K. Binder, Phys. Rev. Lett. 103, 198301 (2009)

    Article  ADS  Google Scholar 

  37. H.-P. Hsu, W. Paul, S. Rathgeber, K. Binder, Macromolecules 43, 1592 (2010)

    Article  ADS  Google Scholar 

  38. G.H. Fredrickson, Macromolecules 26, 2825 (1993)

    Article  ADS  Google Scholar 

  39. L. Feuz, F.A.M. Leermakers, M. Textor, O.V. Borisov, Macromolecules 38, 8891 (2005)

    Article  ADS  Google Scholar 

  40. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  41. A. Stroobants, H.N.W. Lekkerkerker, Th. Odijk, Macromolecules 19, 2232 (1986)

    Article  ADS  Google Scholar 

  42. S. Faden, G. Maret, D.L.D. Caspar, R.B. Meyer, Phys. Rev. Lett. 63, 2068 (1989)

    Article  ADS  Google Scholar 

  43. D. Hinderberger, H.W. Spiess, G. Jeschke, Europhys. Lett. 70, 102 (2005)

    Article  ADS  Google Scholar 

  44. H.-P. Hsu, W. Paul, K. Binder, J. Chem. Phys. 137, 174902 (2012)

    Article  ADS  Google Scholar 

  45. H.-P.Hsu, W. Paul, K. Binder, Macromolecules 47, 427 (2014)

    Article  Google Scholar 

  46. W. Reisner, J.N. Pedersen, R.H. Austin, Rep. Prog. Phys. 75, 106601 (2012)

    Article  ADS  Google Scholar 

  47. H.-P. Hsu, K. Binder, Soft Matter 9, 10512 (2013)

    Article  ADS  Google Scholar 

  48. H.-P. Hsu, K. Binder, Macromolecules 46, 8017 (2013)

    Article  ADS  Google Scholar 

  49. A. Muralidhar, D.R. Tree, K.D. Dorfmann, Macromolecules 47, 8446 (2014)

    Article  ADS  Google Scholar 

  50. T.M. Birshtein, E.B. Zhulina, A.M. Skvortsov, Biopolymers 18, 1171 (1979)

    Article  Google Scholar 

  51. H.-P. Hsu, K. Binder, Macromolecules 46, 2496 (2013)

    Article  ADS  Google Scholar 

  52. A.R. Khokhlov, A.N. Semenov, Physica A 108, 546 (1981)

    Article  ADS  Google Scholar 

  53. S.A. Egorov, A. Milchev, K. Binder, Phys. Rev. Lett. 116, 187801 (2016)

    Article  ADS  Google Scholar 

  54. A. Huang, A. Bhattacharya, K. Binder, EPL 105, 18002 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Binder, H.-P. Hsu or W. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, K., Hsu, HP. & Paul, W. Understanding the stiffness of macromolecules: From linear chains to bottle-brushes. Eur. Phys. J. Spec. Top. 225, 1663–1671 (2016). https://doi.org/10.1140/epjst/e2016-60017-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60017-5

Navigation