Skip to main content
Log in

Synthesis and Properties of Polymer Photonic Crystals Based on Core–Shell Particles

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

This review addresses recent achievements in the field of producing photonic-crystalline structures from polymer core/shell particles. The synthesis of polymer particles, in which a core is formed by hard crosslinked polymers and a shell is based on thermoplastic polymers or elastomers, offers the way to create the so-called stimuli-responsive (or “smart”) photonic crystals. Main principles underlying the self-assembly of polymer particles into periodic colloidal structures are considered. Elastic large-area 3D structures can be formed by the self-organization of core/shell particles under their compression at high temperatures. Prospects for the application of smart photonic-crystalline films are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Habibi, G. Moradi, A. Moradi, and F. Golbabaei, Environ. Nanotechnol., Monit. Manage. 16, 100504 (2021).

  2. J. Fan, L. Zhang, S. Wei, Z. Zhang, S.-K. Choi, B. Song, and Y. Shi, Mater. Today 50, 303 (2021).

    Article  Google Scholar 

  3. F. Wang, Z. Meng, F. Xue, M. Xue, W. Lu, W. Chen, and Y. Wang, Trends Environ. Anal. Chem. 34, 1 (2014).

    Google Scholar 

  4. B. Saraswati and J. Joby, Opt. Lett. 41 (15), 3579 (2016).

    Article  Google Scholar 

  5. E. M. White, J. Yatvin, J. B. Grubbs, J. A. Bilbrey, and J. Locklin, J. Polym. Sci., Polym. Phys. Ed. 51 (14), 1084 (2013).

    Article  CAS  Google Scholar 

  6. A. Y. Men’shikova, N. N. Shevchenko, T. G. Evseeva, A. V. Koshkin, G. A. Pankova, B. M. Shabsel’s, V. V. Faraonova, A. V. Goikhman, A. V. Yakimanskii, V. A. Sazhnikov, and M. V. Alfimov, Polym. Sci., Ser. B 54 (1–2), 21 (2012).

    Article  Google Scholar 

  7. N. N. Shevchenko, B. M. Shabsels, A. Y. Menshikova, and G. A. Pankova, Nanotechnol. Russ. 7, 188 (2012).

    Article  Google Scholar 

  8. N. Shevchenko, G. Pankova, B. Shabsel’s, V. Baigildin, A. Koshkin, T. Ukleev, and A. Sel’kin, J. Dispersion Sci. Technol. 40 (6), 802 (2019).

    Article  CAS  Google Scholar 

  9. N. Shevchenko, G. Pankova, S. Laishevkina, O. Iakobson, A. Koshkin, and B. Shabsels, Colloids Surf., A 562, 310 (2019).

    Article  CAS  Google Scholar 

  10. T. A. Ukleev, N. N. Shevchenko, D. I. Iurasova, and A. V. Sel’kin, Phys. Solid State 60 (5), 916 (2018).

    Article  CAS  Google Scholar 

  11. R. Mukhopadhyay, O. Al-Hanbali, S. Pillai, and A. G. Hemmersam, J. Am. Chem. Soc. 129 (44), 13390 (2007).

    Article  CAS  Google Scholar 

  12. I. I. Tarhan and G. H. Watson, Phys. Rev. Lett. 76 (2), 315 (1996).

    Article  CAS  Google Scholar 

  13. P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, Adv. Mater. 18 (20), 2665 (2006).

    Article  CAS  Google Scholar 

  14. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Solid State Commun. 102, 165 (1997).

    Article  CAS  Google Scholar 

  15. V. F. Chernow, R. C. Ng, S. Peng, H. A. Atwater, and J. R. Greer, Nano Lett. 21 (21), 9102 (2021).

    Article  CAS  Google Scholar 

  16. Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, Nano Lett. 2 (7), 785 (2002).

    Article  CAS  Google Scholar 

  17. U. Jeong, J.-U. Kim, Y. Xia, and Z.-Y. Li, Nano Lett. 5 (5), 937 (2005).

    Article  CAS  Google Scholar 

  18. W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma, and J. Guan, Nano Lett. 20 (2), 803 (2020).

    Article  CAS  Google Scholar 

  19. K. Zhang, M. Jiang, and D. Chen, Prog. Polym. Sci. 37 (3), 445 (2012).

    Article  Google Scholar 

  20. G. Bazin and X. X. Zhu, Prog. Polym. Sci. 38 (2), 406 (2013).

    Article  CAS  Google Scholar 

  21. C. Mijangos, R. Hernandez, and J. Martin, Prog. Polym. Sci. 5455, 148 (2016).

    Article  Google Scholar 

  22. A.-I. Gopalan, S. Komathi, N. Muthuchamy, K. P. Lee, M. J. Whitcombe, and D. Lakshmi, Prog. Polym. Sci. 88, 1 (2019).

    Article  Google Scholar 

  23. X. Zhang, Y. Xu, X. Zhang, H. Wu, J. Shen, R. Chen, and S. Guo, Prog. Polym. Sci. 89, 76 (2019).

    Article  CAS  Google Scholar 

  24. Z. Li, A. Olah, and E. Baer, Prog. Polym. Sci. 102, 101210 (2020).

  25. Z. Su, R. Zhang, X. Yan, Q. Guo, J. Huang, W. Shan, and S. Z. D. Cheng, Prog. Polym. Sci. 103, 101230 (2020).

  26. Q. Zhang, Y. Zhang, Y. Wan, W. Carvalho, L. Hu, and M. J. Serpe, Prog. Polym. Sci. 116, 101386 (2021).

  27. P. Goulis, I. A. Kartsonakis, and C. A. Charitidis, Fibers 8 (11), 71 (2020).

    Article  CAS  Google Scholar 

  28. K. S. Kumar, V. B. Kumar, and P. Paik, J. Nanopart. 2013, 672059 (2013).

  29. R. A. Ramli, W. A. Laftah, and S. Hashim, RSC Adv., No. 36, 15543 (2013).

  30. J. Ma, Y. Liu, Y. Bao, J. Liu, and J. Zhang, Adv. Colloid Interface Sci. 197198, 118 (2013).

    Article  Google Scholar 

  31. S. Chen, J. Zhang, S. Song, R. Feng, Y. Ju, C. Xiong, and L. Dong, Langmuir 32 (2), 611 (2016).

    Article  Google Scholar 

  32. D. Niu, Y. Jiang, J. He, X. Jia, L. Qin, J. Hao, and Y. Li, ACS Appl. Bio Mater. 2 (12), 5707 (2019).

    CAS  Google Scholar 

  33. Y. Hu, C. Zhang, Y. Chen, X. Liu, M. Lv, and L. Hu, Mater. Lett. 64 (19), 2091 (2010).

    Article  CAS  Google Scholar 

  34. Z. Chen, Y. Zhang, L. Duan, Z. Wang, Y. Li, and P. He, J. Adhes. Sci. Technol. 29 (19), 2117 (2015).

    Article  CAS  Google Scholar 

  35. B. Viel, T. Ruhl, and G. P. Hellmann, Chem. Mater. 19 (23), 5673 (2007).

    Article  CAS  Google Scholar 

  36. S. Shang, P. Zhu, H. Wang, Y. Li, and S. Yang, ACS Appl. Mater. Interfaces 12 (45), 50844 (2020).

    Article  CAS  Google Scholar 

  37. H. Zou, S. Wu, and J. Shen, Langmuir 24 (18), 10453 (2008).

    Article  CAS  Google Scholar 

  38. F. Brandl, A. F. Thünemann, and S. Beuermann, Polym. Chem. 9, 5359 (2018).

    Article  CAS  Google Scholar 

  39. A. Peled, V. Kotlyar, and J. P. Lellouche, J. Mater. Chem. 19, 268 (2009).

    Article  CAS  Google Scholar 

  40. W. Smulders and M. J. Monteiro, Macromolecules 37 (12), 4474 (2004).

    Article  CAS  Google Scholar 

  41. W. S. J. Li, V. Ladmiral, H. Takeshima, K. Satoh, M. Kamigaito, M. Semsarilar, and S. Caillol, Polym. Chem. 10 (23), 3116 (2019).

    Article  CAS  Google Scholar 

  42. N. Shevchenko, G. Pankova, O. Iakobson, R. Abiev, S. Svetlov, and N. Ilin, J Microencapsulation 37, 457 (2020).

    Article  CAS  Google Scholar 

  43. J. K. Nunes, S. S. Tsai, J. Wan, and H. A. Stone, J. Phys. D: Appl. Phys. 46, 114002 (2013).

  44. J. T. Wang, J. Wang, and J. J. Han, Small 7, 1728 (2011).

    Article  CAS  Google Scholar 

  45. J. Wang, Y. Li, X. Wang, J. Wang, H. Tian, P. Zhao, and C. Wang, Micromachines 8, 22 (2017).

    Article  Google Scholar 

  46. K. Maeda, H. Onoe, M. Takinoue, and S. Takeuchi, Adv. Mater. 10, 1340 (2012).

    Article  Google Scholar 

  47. O. L. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, Adv. Mater. 20 (8), 1484 (2008).

    Article  CAS  Google Scholar 

  48. E. C. C. Goh and H. D. H. Stöver, Macromolecules 35 (27), 9983 (2002).

    Article  CAS  Google Scholar 

  49. J. Kredel and M. Gallei, Polymers 11 (12), 2114 (2019).

    Article  CAS  Google Scholar 

  50. M. Gallei, Macromol. Rapid Commun. 39 (4) (2017).

  51. W. Waraporn, K. Young-Gon, and T. Pramuan, Polym. Chem. 11, 2119 (2020).

    Article  Google Scholar 

  52. S. J. L. Wing, V. Ladmiral, H. Takeshima, and K. Satoh, Polym. Chem. 10, 3116 (2019).

    Article  Google Scholar 

  53. B. Liu, S. Huang, Z. Xu, and F. Gao, J. New, Chem. 38, 4996 (2014).

    CAS  Google Scholar 

  54. Y. Li, X. Zheng, K. Wu, and M. Lu, RSC Adv. 6, 2571 (2016).

    Article  CAS  Google Scholar 

  55. J. Mao and Z. Zhang, J. Mater. Chem. B 4, 5429 (2016).

    Article  CAS  Google Scholar 

  56. I. Avrutsky, B. Li, and Y. Zhao, J. Opt. Soc. Am. B 17 (6), 904 (2002).

    Article  Google Scholar 

  57. Ordering and Phase Transitions in Charged Colloids, Ed. by B. V. R. Arora and B. V. R. Tata (Wiley-VCH, New York, 1996).

    Google Scholar 

  58. R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 61 (7), 4549 (2020).

    Article  Google Scholar 

  59. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12 (10), 562 (2000).

    Article  Google Scholar 

  60. N. Ise, T. Okubo, and K. Ito, Langmuir 1 (1), 176 (1985).

    Article  CAS  Google Scholar 

  61. Colloids and Colloid Assemblies, Ed. by F. Caruso (Wiley, Weinheim, 2004).

    Google Scholar 

  62. A. D. Dinsmore, J. C. Crocker, and A. G. Yodh, Curr. Opin. Colloid Interface Sci. 3 (1), 5 (1998).

    Article  CAS  Google Scholar 

  63. T. Okubo, Acc. Chem. Res. 21, 281 (1988).

    Article  CAS  Google Scholar 

  64. A. H. Cardoso, C. A. P. Leite, M. E. D. Zaniquelli, and F. Galembeck, Colloids Surf., A 144 (1–3), 207 (1998).

    Article  Google Scholar 

  65. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Consultants Bureau, New York, 1987).

    Book  Google Scholar 

  66. Y. Terada and M. Tokuyama, Phys. A: Stat. Mech. Appl. 334 (3), 327 (2004).

    Article  Google Scholar 

  67. J. Texter, Comptes Rendus Chimie 6 (11–12), 1425 (2003).

    Article  CAS  Google Scholar 

  68. Y. Chen, J. E. Gautrot, and X. X. Zhu, Langmuir 23 (3), 1047 (2007).

    Article  CAS  Google Scholar 

  69. B. T. Nguyen, J. E. Gautrot, C. Ji, P.-L. Brunner, M. T. Nguyen, and X. X. Zhu, Langmuir 22 (10), 4799 (2006).

    Article  CAS  Google Scholar 

  70. Y. Chen, J. E. Gautrot, Z. Li, and X. X. Zhu, Soft Matter 3, 571 (2007).

    Article  CAS  Google Scholar 

  71. M. Colonne, Y. Chen, K. Wu, S. Freiberg, S. Giasson, and X. X. Zhu, Bioconjugate Chem. 18 (3), 999 (2007).

    Article  CAS  Google Scholar 

  72. C. Kruger and U. Jonas, J. Colloid Interface Sci. 252 (2), 331 (2002).

    Article  Google Scholar 

  73. O. Kalinina and E. A. Kumacheva, Macromolecules 32 (12), 4122 (1999).

    Article  CAS  Google Scholar 

  74. I. Gorelikov and E. Kumacheva, Chem. Mater. 16, 4122 (2004).

    Article  CAS  Google Scholar 

  75. T. Ruhl, P. Spahn, and G. P. Hellmann, Polymer 44 (25), 7625 (2003).

    Article  CAS  Google Scholar 

  76. T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, Macromol. Chem. Phys. 205 (10), 1385 (2004).

    Article  CAS  Google Scholar 

  77. S. Vowinkel, A. Boehm, T. Schäfer, T. Gutmann, E. Ionescu, and M. Gallei, Mater. Des. 60, 926 (2018).

    Article  Google Scholar 

  78. A. K. Boehm, E. Ionescu, M. Koch, and M. Gallei, Molecules 24 (19), 3553 (2019).

    Article  CAS  Google Scholar 

  79. A. M.-B. Schlander, and B. M. Gallei, ACS Appl. Mater. Interfaces 11 (47), 44764 (2019).

    Article  CAS  Google Scholar 

  80. S. Vowinkel, C. G. Schäfer, G. Cherkashinin, C. Fasel, F. Roth, N. Liu, C. Dietz, E. Ionescu, and M. Gallei, J. Mater. Chem. C 4 (18), 3976 (2016).

    Article  CAS  Google Scholar 

  81. G. L. Li, H. Möhwald, and D. G. Shchukin, Chem. Soc. Rev. 42 (8), 3628 (2013).

    Article  CAS  Google Scholar 

  82. G. L. Li, G. Liu, E. T. Kang, K. G. Neoh, and X. L. Yang, Langmuir 24 (16), 9050 (2008).

    Article  CAS  Google Scholar 

  83. Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, J. Mater. Chem. 21 (37), 14113 (2011).

    Article  CAS  Google Scholar 

  84. Q. Zhao, C. E. Finlayson, D. R. E. Snoswell, A. Haines, C. Schäfer, P. Spahn, G. P. Hellmann, and A. V. Petukhov, Nature Commun. 7, 11661 (2016).

    Article  CAS  Google Scholar 

  85. Q. Zhao, C. E. Finlayson, C. G. Schäfer, P. Spahn, M. Gallei, L. Herrmann, A. V. Petukhov, and J. J. Baumberg, Adv. Opt. Mater 4 (10), 1494 (2016).

    Article  CAS  Google Scholar 

  86. J. Li and Y. Han, Langmuir 22, 1885 (2006).

    Article  CAS  Google Scholar 

  87. L. M. Goldenberg, J. Wagner, J. Stumpe, B. R. Paulke, and E. Gornitz, Langmuir 18, 3319 (2002).

    Article  CAS  Google Scholar 

  88. A. Stein, Microporous Mesoporous Mater. 4445, 227 (2001).

    Article  Google Scholar 

  89. X. Wang, Y. Yang, and Z. Yang, Chin. Sci. Bull. 55 (30), 3441 (2010).

    Article  CAS  Google Scholar 

  90. C. Liu, C. Yao, Y. Zhu, J. Ren, and L. Ge, Sens. Actuators, B 220, 227 (2015).

    Article  CAS  Google Scholar 

  91. C. G. Schäfer, D. A. Smolin, G. P. Hellmann, and M. Gallei, Langmuir 29 (36), 11275 (2013).

    Article  Google Scholar 

  92. C. G. Schäfer, B. Viel, G. P. Hellmann, M. Rehahn, and M. Gallei, ACS Appl. Mater. Interfaces 5 (21), 10623 (2013).

    Article  Google Scholar 

  93. C. G. Schäfer, M. Gallei, J. T. Zahn, J. Engelhardt, G. P. Hellmann, and M. Rehahn, Chem. Mater. 25 (11), 2309 (2013).

    Article  Google Scholar 

  94. C. G. Schäfer, T. Winter, S. Heidt, C. Dietz, T. Ding, J. J. Baumberg, and M. Gallei, J. Mater. Chem. C 3 (10), 2204 (2015).

    Article  Google Scholar 

Download references

Funding

This work was performed within the framework of the State Assignment no. 122012000450-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, N.N., Shabsel’s, B.M., Iurasova, D.I. et al. Synthesis and Properties of Polymer Photonic Crystals Based on Core–Shell Particles. Polym. Sci. Ser. C 64, 245–255 (2022). https://doi.org/10.1134/S1811238222700084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238222700084

Navigation