Skip to main content
Log in

Amphiphilic ABA-Type Block–Graft Molecular Brushes Based on Polyimide

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

New amphiphilic ABA-type molecular brushes of mixed block–graft topology, where the central block B is a molecular brush with a hydrophobic polyimide backbone and hydrophilic side chains of poly(methacrylic acid) and A blocks are peripheral hydrophobic chains of poly(methyl methacrylate), have been synthesized. For the synthesis of the copolymers, an approach based on a combination of atom transfer radical polymerization (ATRP) and click chemistry in the variant of Cu(I)-catalyzed azide–alkyne cycloaddition was proposed. To implement the proposed approach, a procedure was developed for the synthesis of heterofunctional polyimide macroinitiators containing ATRP-initiating groups in each unit and terminal alkynyl groups capable of participating in the “click” reaction. Further, the synthesis of well-defined block–graft ABA molecular brushes was carried out using such initiators. First, peripheral poly(methyl methacrylate) chains were synthesized in a controlled mode using ATRP, followed by their functionalization with azide groups. Then, using the click chemistry approach, these chains were grafted to the terminal alkynyl groups of the heterofunctional initiator. The hydrophilic side chains were introduced into block B using the “grafting from” ATRP method in several steps through the intermediate formation of a regularly grafted prepolymer with poly(tert-butyl methacrylate) side chains. At the last step, as a result of selective acid hydrolysis of the side-chain ester groups in block B, amphiphilic multicomponent brushes with hydrophilic poly(methacrylic acid) units in the side chains were obtained. The possibility of sequential and simultaneous ATRP and click reaction has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. S. Sheiko, B. S. Sumerlin, and K. Matyjaszewski, Prog. Polym. Sci. 33 (7), 759 (2008).

    Article  CAS  Google Scholar 

  2. M. Müllner and A. H. E. Müller, Polymer 98, 389 (2016).

    Article  Google Scholar 

  3. K. Matyjaszewski and N. V. Tsarevsky, Nat. Chem. 1, 276 (2009).

    Article  CAS  Google Scholar 

  4. J. Rzayev, ACS Macro Lett. 1 (9), 1146 (2012).

    Article  CAS  Google Scholar 

  5. R. Fenyves, M. Schmutz, I. J. Horner, F. V. Bright, J. Rzayev, J. Am. Chem. Soc. 136 (21), 7762 (2014).

    Article  CAS  Google Scholar 

  6. R. Verduzco, X. Li, S. L. Pesek, and G. E. Stein, Chem. Soc. Rev. 44, 2405 (2015).

    Article  CAS  Google Scholar 

  7. T. Pelras, C. S. Mahon, and M. Müllner, Angew. Chem., Int. Ed. 57 (24), 6982 (2018).

    Article  CAS  Google Scholar 

  8. I. V. Ivanov, T. K. Meleshko, A. V. Kashina, and A. V. Yakimansky, Russ. Chem. Rev. 88 (12), 1248 (2019).

    Article  CAS  Google Scholar 

  9. C. Teulère, C. Ben-Osman, C. Barry, and R. Nicolaÿ, Eur. Polym. J. 141, 110080 (2020).

  10. E. A. Garcia, H. Y. Luo, C. E. Mack, and M. Herrera-Alonso, Soft Matter 16, 8871 (2020).

    Article  CAS  Google Scholar 

  11. B. Zhao, J. Phys. Chem. B 125 (24), 6373 (2021).

    Article  CAS  Google Scholar 

  12. H. Ma and K. T. Kim, Macromolecules 53 (2), 711 (2020).

    Article  CAS  Google Scholar 

  13. B. Xu, H. Qian, and S. Lin, ACS Macro Lett. 9 (3), 404 (2020).

    Article  CAS  Google Scholar 

  14. K. Chen, X. Hu, N. Zhu, and K. Guo, Macromol. Rapid Commun. 41 (20), 2000357 (2020).

  15. M. Müllner, Macromol. Chem. Phys. 217 (20), 2209 (2016).

    Article  Google Scholar 

  16. G. Xie, M. R. Martinez, M. Olszewski, S. S. Sheiko, K. Matyjaszewski, Biomacromolecules 20 (1), 27 (2019).

    Article  CAS  Google Scholar 

  17. C. Feng and X. Huang, Acc. Chem. Res. 51 (9), 2314 (2018).

    Article  CAS  Google Scholar 

  18. Z. Li, M. Tang, S. Liang, M. Zhang, G. M. Biesold, Y. He, S.-M. Hao, W. Choi, Y. Liu, J. Peng, Z. Lin, Prog. Polym. Sci. 116, 101387 (2021).

  19. B. Xu, C. Feng, and X. Huang, Nat. Commun. 8, 333 (2017).

    Article  Google Scholar 

  20. Y. Chen, Z. Sun, H. Li, Y. Dai, Z. Hu, H. Huang, Y. Shi, Y. Li, Y. Chen, ACS Macro Lett. 8 (6), 749 (2019).

    Article  Google Scholar 

  21. C. E. Hobbs and M. Vasireddy, Macromol. Chem. Phys. 220 (7), 1800497 (2019).

  22. A. Steinhaus, T. Pelras, R. Chakroun, A. H. Gröschel, M. Müllner, Macromol. Rapid Commun. 39 (19), 1800177 (2018).

  23. D. Han, X. Tong, and Y. Zhao, Macromolecules 44 (13), 5531 (2011).

    Article  CAS  Google Scholar 

  24. Y. Wang, R. Ren, J. Ling, W. Sun, Z. Shen, Polymer 138, 378 (2018).

    Article  CAS  Google Scholar 

  25. H. Luo, D. Raciti, C. Wang, and M. Herrera-Alonso, Mol. Pharm. 13 (6), 1855 (2016).

    Article  CAS  Google Scholar 

  26. T. K. Meleshko, I. V. Ivanov, A. V. Kashina, N. N. Bogorad, M. A. Simonova, N. V. Zakharova, A. P. Filippov, A. V. Yakimansky, Polymer Science, Ser. B 60 (1), 35 (2018).

    Article  CAS  Google Scholar 

  27. M. Simonova, I. Ivanov, T. Meleshko, A. Kopyshev, S. Santer, A. Yakimansky, A. Filippov, Polymers 12 (12), 2922 (2020).

    Article  CAS  Google Scholar 

  28. S. Neumann, M. Biewend, S. Rana, and W. H. Binder, Macromol. Rapid Commun. 41 (1), 1900359 (2020).

  29. K. Matyjaszewski, Macromolecules 45 (10), 4015 (2012).

    Article  CAS  Google Scholar 

  30. T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, A. V. Yakimansky, Polymer Science, Ser. B 56 (2), 118 (2014).

    Article  CAS  Google Scholar 

  31. A. V. Yakimansky, T. K. Meleshko, D. M. Ilgach, M. A. Bauman, T. D. Anan’eva, L. G. Klapshina, S. A. Lermontova, I. V. Balalaeva, W. E. Douglas, J. Polym. Sci., Part A: Polym. Chem. 51 (20), 4267 (2013).

    Article  CAS  Google Scholar 

  32. T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, E. N. Vlasova, A. V. Dobrodumov, I. I. Malakhova, N. I. Gorshkov, V. D. Krasikov, A. V. Yakimanskii, Polymer Science, Ser. B 52 (9–10), 589 (2010).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-13-00270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, I.V., Kashina, A.V., Kukarkina, N.V. et al. Amphiphilic ABA-Type Block–Graft Molecular Brushes Based on Polyimide. Polym. Sci. Ser. C 64, 219–231 (2022). https://doi.org/10.1134/S1811238222700047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238222700047

Navigation