Skip to main content
Log in

Consistent empirical physical formulas for potential energy curves of 38–66Ti isotopes by using neural networks

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Nuclear shape transition has been actively studied in the past decade. In particular, the understanding of this phenomenon from a microscopic point of view is of great importance. Because of this reason, many works have been employed to investigate shape phase transition in nuclei within the relativistic and nonrelativistic mean field models by examining potential energy curves (PECs). In this paper, by using layered feed-forward neural networks (LFNNs), we have constructed consistent empirical physical formulas (EPFs) for the PECs of 38–66Ti calculated by the Hartree-Fock-Bogoliubov (HFB) method with SLy4 Skyrme forces. It has been seen that the PECs obtained by neural network method are compatible with those of HFB calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Casten and E. A. McCutchan, J. Phys. G: Nucl. Part. Phys. 34, R285–R320 (2007).

    Article  ADS  Google Scholar 

  2. P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155–2212 (2010).

    Article  ADS  Google Scholar 

  3. F. Iachello, Phys. Rev. Lett. 85, 3580–3583 (2000).

    Article  ADS  Google Scholar 

  4. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

    Article  ADS  Google Scholar 

  5. R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584–3586 (2000).

    Article  ADS  Google Scholar 

  6. R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001).

    Article  ADS  Google Scholar 

  7. H. Flocard et al., Nucl. Phys., Ser. A 203, 433–472 (1973).

    Article  ADS  Google Scholar 

  8. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).

    Book  Google Scholar 

  9. B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1–321 (1986).

    Google Scholar 

  10. P. Ring, Prog. Part. Nucl. Phys. 37, 193–263 (1996).

    Article  ADS  Google Scholar 

  11. J. Meng et al., Prog. Part. Nucl. Phys. 57, 470–563 (2006).

    Article  ADS  Google Scholar 

  12. J. Meng et al., Eur. Phys. J., Ser. A 25, 23–27 (2005).

    Article  Google Scholar 

  13. R. Fossion, D. Bonatsos, and G. A. Lalazissis, Phys. Rev., Ser. C 73, 044310 (2006).

    Article  ADS  Google Scholar 

  14. M. Yu et al., Int. J. Mod. Phys., Ser. E 15, 939 (2006).

    Article  ADS  MATH  Google Scholar 

  15. R. Rodriguez-Guzmin and P. Sarriguren, Phys. Rev., Ser. C 76, 064303 (2007).

    Article  ADS  Google Scholar 

  16. J.-Y. Guo, X. Z. Fang, and Z. Q. Sheng, Int. J. Mod. Phys., Ser. E 17, 539–548 (2008).

    Article  ADS  Google Scholar 

  17. A. H. Yilmaz and T. Bayram, J. Korean Phys. Soc. 59, 3329–3336 (2011).

    Article  Google Scholar 

  18. B.-M. Yao and J.-Y. Guo, Mod. Phys. Lett., Ser. A 25, 1177–1186 (2010).

    Article  ADS  Google Scholar 

  19. T. Bayram, Mod. Phys. Lett., Ser. A 27, 1250162 (2012).

    Article  ADS  Google Scholar 

  20. T. Bayram and A. H. Yilmaz, “A study on shape of Te isotopes in mean field formalism, arXiv: 1301.2684 [nucl-th].

  21. T. Nikssic et al., Phys. Rev. Lett. 99, 092502 (2007).

    Article  ADS  Google Scholar 

  22. M. Bender and P.-H. Heenen, Phys. Rev., Ser. C 78, 024309 (2008).

    Article  ADS  Google Scholar 

  23. J. M. Yao et al., Phys. Rev., Ser. C 81, 044311 (2010).

    Article  ADS  Google Scholar 

  24. T. R. Rodriguez and J. L. Egido, Phys. Rev., Ser. C 81, 064323 (2010).

    Article  ADS  Google Scholar 

  25. A. Bholoa et al., Nucl. Instr. Meth., Ser. B 255, 1–7 (2007).

    Article  ADS  Google Scholar 

  26. S. Athanassopoulos et al., Nucl. Phys., Ser. A 743, 222–235 (2004).

    Article  ADS  Google Scholar 

  27. E. Mavrommatis, K. A. Gernoth, and J. W. Clark, “One and two proton separation energies from nuclear mass systematics using neural networks,” arXiv: nucl-th/0509075.

  28. K. L. Peterson, Phys. Rev., Ser. A 44, 126–138 (1991).

    Article  ADS  Google Scholar 

  29. R. M. Balabin and E. I. Lomakina, J. Chem. Phys. 131, 074104 (2009).

    Article  ADS  Google Scholar 

  30. L. R. Marim, M. R. Lemes, and A. Dal Pino, Jr., Tho. Chem. 663, 159–165 (2003).

    Google Scholar 

  31. A. R. S. Latino Diogo et al., J. Electroanal. Chem. 624, 109–120 (2008).

    Article  Google Scholar 

  32. N. Costris et al., “A global model of beta(-) decay halflives using neural networks,” arXiv: nucl-th/0701096v1.

  33. C. David and J. Aichelin, Pisa, Italy, 1995, pp. 709–718.

  34. M. V. Stoitsov et al., Comp. Phys. Commun. 167, 43–63 (2005).

    Article  ADS  Google Scholar 

  35. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice-Hall Inc., USA, NJ, Englewood Cliffs, 1999).

    MATH  Google Scholar 

  36. K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2, 359–366 (1989).

    Article  Google Scholar 

  37. Neurosolutions, http://www.neurosolutions.com/.

  38. K. Levenberg, Quart. Appl. Math. 2, 164–168 (1944).

    MathSciNet  MATH  Google Scholar 

  39. D. Marquardt, SIAM J. Appl. Math. 11, 431–441 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  40. N. Yildiz, Phys. Lett., Ser. A 345(1–3), 69 (2005).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akkoyun.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkoyun, S., Bayram, T., Kara, S.O. et al. Consistent empirical physical formulas for potential energy curves of 38–66Ti isotopes by using neural networks. Phys. Part. Nuclei Lett. 10, 528–534 (2013). https://doi.org/10.1134/S1547477113060022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477113060022

Keywords

Navigation