Skip to main content
Log in

Polymer organic-inorganic materials for membrane technology, their characteristics and properties

  • Proceedings of the First All-Russian Conference “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems” (St. Petersburg, Russia, November 22–24, 2010)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Organo-inorganic nanocomposite glassy films are obtained by the sol-gel method via hydrolytic polycondensation reactions of silicon and titanium alkoxides in solutions of polymers of different chemical compositions. The polymer structure and interaction with oxides in the films are investigated by FTIR spectroscopy, atomic force microscopy, using a particle size analyzer and a number of physicochemical methods. The presence of nanosized (from ∼20 to 370 nm) particles of the oxides in the structure of hybrid films is confirmed. It is shown that the best practically useful properties are exhibited by the composite films with strong organo-inorganic polymer-oxide networks. Such films may be used for creating membranes and sorbents for water purification from harmful organic and ionic admixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham, T., On the Properties of Silicic Acid and Other Analogous Colloidal Substances, J. Chem. Soc., 1864, vol. 16, no. 1, pp. 318–327.

    Article  Google Scholar 

  2. Hench, L.L. and West, J.K., The Sol-Gel Process, Chem. Rev., 1990, no. 1, pp. 33–72.

  3. Tian, D., Dubois, Ph., and Jerome, R., Biodegradable and Biocompatible Inorganic-Organic Hybrid Materials: 1. Synthesis and Characterization, J. Polym. Sci., Part A: Polym. Chem., 1997, vol. 35, no. 11, pp. 2295–2309.

    Article  CAS  Google Scholar 

  4. Qiu, W., Luo, Y., Chen, F., Duo, Y., and Tan, H., Morphology and Size Control of Inorganic Particles in Polyimide Hybrids by Using SiO2-TiO2 Mixed Oxide, Polymer, 2003, vol. 44, pp. 5821–5826.

    Article  CAS  Google Scholar 

  5. Yang, Y. and Wang, P., Preparation and Characterizations of a New PS/TiO2 Hybrid Membranes by Sol-Gel Process, Polymer, 2006, vol. 47, no. 8, pp. 2683–2688.

    Article  CAS  Google Scholar 

  6. Sequeira, S., Evtuguin, D.V., Portugal, Y., and Esculcas, A.P., Synthesis and Characterization of Cellulose Hybrids Obtained Heteropoly Acid Catalysed Sol-Gel Process, Mater. Sci. Eng., C, 2007, vol. 27, no. 2, pp. 172–179.

    Article  CAS  Google Scholar 

  7. Yang, Ya-N., Zhang, H-X., Wang, P., Zhang, M.-Y., Yang, H.-D., Hu, M.-Z., and Jin, J. Kinetic and Thermodynamic Research of Polysul-phone/TiO2 Hybrid Ultrafiltration Membrane, Acta Chim. Sin. (Engl. Ed.), 2007, vol. 65, no. 13, pp. 1258–1264.

    CAS  Google Scholar 

  8. Suvorova, A.I., Suvorov, A.L., Koryakova, O.V., and Zolotova, E.S., Hybrid Organic-Inorganic Films Polyvinyl Alcohol / Silicon Oxide, in Fiziko-khimiya polimerov. Sintez, svoistva i primenenie. Sbornik nauchnykh trudov (Physics and Chemistry of Polymers: Synthesis, Properties and Applications: Collection of Scientific Works), Tver: Tver State University, 2009 [in Russian].

    Google Scholar 

  9. Summ, B.D., Osnovy kolloidnoi khimii (Foundations of Colloid Chemistry), Moscow: Akademiya, 2006 [in Russian].

    Google Scholar 

  10. Fridrikhsberg, D.A., Kurs kolloidnoi khimii (Course of Colloid Chemistry), St. Petersburg: Lan, 2010.

    Google Scholar 

  11. Shapovalov, V.I., Nanopowders and Films of Titanium Oxide for Photocatalysis: A Review, Glass Phys. Chem., 2010, vol. 36, no. 2, pp. 145–194.

    Article  Google Scholar 

  12. Suvorova, A.I., Tyukova, I.S., Orlova, T.I., and Nadol’skii, A.L., The Structure of the Organic-Inorganic Films of Polyamide-(SiO2)x, in “Tekhnicheskaya khimiya. Ot teorii k praktike.” Materialy mezhdunarodnoi konferentsii (Proceedings of the International Conference “Technical Chemistry: From Theory to Practice”), Perm, 2008, pp. 235–239.

  13. Suvorova, A.I., Suvorov, A.L., Ivanenko, M.V., and Shishkin, E.I., Nanocomposite Membrane Films on the Basis of Ether of Cellulose and Tetraethoxysilane, Nanotechnol. Russ., 2009, vol. 4, no. 1–2, pp. 102–108.

    Article  Google Scholar 

  14. Tyukova, I.S., Suvorova, A.I., Okuneva, A.I., and Shishkin, E.I., Preparation and Structure of Chitosan-Silica Organic-Inorganic Hybrid Films, Polym. Sci., Ser. B, 2010, vol. 52, no. 9, pp. 1702–1708.

    Article  CAS  Google Scholar 

  15. Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1977. Translated under the title Fizicheskaya khimiya poverkhnostei, Moscow: Mir, 1979.

    Google Scholar 

  16. Bellamy, L.J., The Infrared Spectra of Complex Molecules, London: Methuen, 1958. Translated under the title Infrakrasnye spektry slozhnykh molekul, Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  17. Voronkov, M.G., Mileshkevich, V.P., and Yuzhelevskii, Yu.A., Siloksanovaya svyaz’ (Siloxane Bond), Moscow: Nauka, 1976 [in Russian].

    Google Scholar 

  18. Yoldas, B.E., Hydrolysis Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters, J. Mater. Sci., 1986, vol. 21, pp. 1087–1092.

    Article  CAS  Google Scholar 

  19. Crini, G., Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Water Treatment, Prog. Polym. Sci., 2005, vol. 30, no. 1, pp. 38–70.

    Article  CAS  Google Scholar 

  20. Lipatov, Yu.S., Fiziko-khimicheskie osnovy napolneniya polimerov, Moscow: Khimiya, 1972. Translated under the title Physical Chemistry of Filled Polymers, London: Rubber and Plastics Research Association of Great Britain, 1979.

    Google Scholar 

  21. Ivanchev, S.S. and Ozerin, A.N., Nanostructures in Polymer Systems, Polym. Sci., Ser. B, 2006, vol. 48, no. 8, pp. 213–225.

    Article  Google Scholar 

  22. Bhanushali, D., Kloos, S., and Bhattacharyya, D., Solute Transport in Solvent-Resistant Nanofiltration Membranes for Non-Aqueous Systems: Experimental Results and Role of Solute-Solvent Coupling, J. Membr. Sci., 2002, vol. 208, no. 2, pp. 343–359.

    Article  CAS  Google Scholar 

  23. Malkin, A.Ya. and Chalykh, A.E., Diffuziya i vyazkost’ polymerov: Metody izmereniya (Diffusion and Viscosity of Polymers: Methods of Measurement), Moscow: Khimiya, 1979 [in Russian].

    Google Scholar 

  24. Osadchii, Yu.P. and Nevskii, A.V., Mathematical Modeling of Separation of Waste Water Containing Dyes, Ekol. Prom-st. Ross., 2009, no. 3, pp. 46–48.

  25. Vrednye khimicheskie veshchestva. Neorganicheskie elementy I–IV gruppy: Spravochnik (Harmful Chemicals. Inorganic Elements I–IV Group: A Handbook), Filov, V.A., Ed., Leningrad: Khimiya, 1988 [in Russian].

    Google Scholar 

  26. Parashchuk, V.V. and Volkov, A.V., Polymeric Materials and Membranes for Nanofiltration of Organic Media, Krit. Tekhnol., Ser.: Membr., 2008, no. 1, pp. 25–34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Suvorova.

Additional information

Original Russian Text © A.I. Suvorova, I.S. Tyukova, A.L. Suvorov, 2011, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suvorova, A.I., Tyukova, I.S. & Suvorov, A.L. Polymer organic-inorganic materials for membrane technology, their characteristics and properties. Glass Phys Chem 37, 629–639 (2011). https://doi.org/10.1134/S1087659611060198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659611060198

Keywords

Navigation