Skip to main content
Log in

Plasma technologies for material processing in nanoelectronics: Problems and solutions

  • Review
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The review considers plasma-processing technologies used in solid-state electronics, both widely used and ones, which do not found yet industrial applications. Several from them are developed specifically for creating nanoelectronic devices. Tendencies toward an increase in the working rate and memory volume and a decrease in the sizes of telecommunication systems necessitate the development of electronic devices based on new principles and, hence, the corresponding technologies for implementation. Physical problems that impede the application of conventional methods in new problems are analyzed, and possible solutions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lieberman, in Proc. 27th Int. Conf. on Phenomena in Ionised Gases (ICPIG), Eindhoven, Netherlands, Yuly 18–22, 2005, (Eindhoven Univ. Technol., Eindhoven, 2006), Rep. 6.

    Google Scholar 

  2. F. Schwierz, Nature Nanotechnol. 5, 487 (2010).

    Article  Google Scholar 

  3. S. Samukawa, M. Hori, S. Rauf, et al., J. Phys. D: Appl. Phys. 45, 253001 (2012).

    Article  Google Scholar 

  4. K. Hashimoto, Jpn. J. Appl. Phys. 32, 6109 (1993).

    Article  Google Scholar 

  5. K. P. Cheung, Plasma Charging Damage (Springer-Verlag, Heidelberg, 2000).

    Google Scholar 

  6. Y. Ishikawa, M. Okigawa, S. Yamazaki, and S. Samukawa, J. Vac. Sci. Technol. B 23, 389 (2005).

    Article  Google Scholar 

  7. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).

    Google Scholar 

  8. F. F. Chen and J. P. Chang, Principles of Plasma Processing (Plenum/Kluwer, New York, 2002).

    Google Scholar 

  9. T. Makabe and Z. Petrovic, Plasma Electronics: Applications in Microelectronic Device Fabrication (Taylor & Francis Group, New York, 2006).

    Google Scholar 

  10. R. K. Yafarov, Physics of Microwave Vacuum–Plasma Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  11. K. D. Shatz and D. N. Ruzic, Plasma Source Sci. Technol. 2, 103 (1993).

    Google Scholar 

  12. D. Leonhardt, S. G. Walton, and R. F. Fernsler, Phys. Plasmas 14, 057103 (2007).

    Article  Google Scholar 

  13. S. G. Walton, D. R. Boris, S. C. Hernandez, et al., ECS J. Solid State Sci. Technol. 4, 5033 (2015).

    Article  Google Scholar 

  14. N. V. Isaev, A. I. Chmil’, and E. G. Shustin, Plasma Phys. Rep. 30, 263 (2004).

    Article  Google Scholar 

  15. N. V. Isaev, M. P. Temiryazeva, V. P. Tarakanov et al., Prikl. Fiz., No. 3, 73 (2008).

    Google Scholar 

  16. E. G. Shustin, N. V. Isaev, M. P. Temiryazeva, and Yu. V. Fedorov, Vacuum 83, 1350 (2009).

    Article  Google Scholar 

  17. E. G. Shustin, N. V. Isaev, I. L. Klykov, and V. V. Peskov, Vacuum 85, 711 (2011).

    Article  Google Scholar 

  18. N. V. Isaev, I. L. Klykov, V. V. Peskov, et al., Instrum. Exp. Tech. 57, 82 (2014).

    Article  Google Scholar 

  19. N. V. Isaev, Yu. V. Fedorov, and E. G. Shustin, Izv. Vyssh. Uchebn. Zaved. Fiz. 49 (8), Append., 99 (2006).

    Google Scholar 

  20. E. G. Shustin, N. V. Isaev, I. L. Klykov, V. V. Peskov, V. I. Polyakov, A. I. Rukovishnikov, and M. P. Temiryazeva, Tech. Phys. 58, 245 (2013).

    Article  Google Scholar 

  21. Yu. I. Latyshev, A. P. Orlov, V. V. Peskov, E. G. Shustin, A. A. Schekin, and V. A. Bykov, Dokl. Phys. 57, 1 (2012).

    Article  Google Scholar 

  22. G. F. Ivanovskii and V. I. Petrov, Ion–Plasma Material Processing (Radio i Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  23. E. G. Shustin, V. P. Tarakanov, and K. Ronald, Vacuum 135, 1 (2017).

    Article  Google Scholar 

  24. J. W. Coburn and E. Kay, J. Appl. Phys. 43, 4965 (1972).

    Article  Google Scholar 

  25. E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, Plasma Sources Sci. Technol. 8, R45 (1999).

    Article  Google Scholar 

  26. P. C. Boyle, A. R. Ellingboe, and M. M. Turner, J. Phys. D: Appl. Phys. 37, 697 (2004).

    Article  Google Scholar 

  27. T. V. Rakhimova, O. V. Braginsky, V. V. Ivanov, et al., IEEE Trans. Plasma Sci. 35, 1229 (2007).

    Article  Google Scholar 

  28. S. B. Wang and A. E. Wendt, J. Vac. Sci. Technol., A 19, 2425 (2010).

    Article  Google Scholar 

  29. M. M. Patterson, H. Y. Chu, and A. E. Wendt, Plasma Sources Sci. Technol. A 16, 257 (2007).

    Article  Google Scholar 

  30. T. Baloniak, R. Reuter, and A. von Keudell, J. Phys. D: Appl. Phys. 43, 335201 (2010).

    Article  Google Scholar 

  31. B. Berger, S. Brandt, J. Franek, et al., J. Appl. Phys. 118, 223302 (2015).

    Article  Google Scholar 

  32. Y. Zhang, A. Zafar, D. J. Coumou, et al., J. Appl. Phys. 117, 233302 (2015).

    Article  Google Scholar 

  33. G. Nandamuri, S. Roumimov, and R. Solanki, Appl. Phys. Lett. 96, 154101 (2010).

    Article  Google Scholar 

  34. L. Zhang, Z. Shi, Y. Wang, et al., Nano Res. 4, 315 (2011).

    Article  Google Scholar 

  35. K. P. Cheung, Plasma Charging Damage (Springer-Verlag, London, 2001).

    Book  Google Scholar 

  36. J. C. Arnold and H. H. Sawin, J. Appl. Phys. 70, 5314 (1991).

    Article  Google Scholar 

  37. H. Ootera, T. Oomori, M. Tuda, and K. Namba, Jpn. J. Appl. Phys. 33, Pt. 1, 4276 (1994).

    Article  Google Scholar 

  38. T. Kinoshita, M. Hane, and J. P. McVittie, J. Vac. Sci. Technol. B 14, 560 (1996).

    Article  Google Scholar 

  39. G. S. Hwang and K. P. Giapis, J. Vac. Sci. Technol. 15, 70 (1997).

    Article  Google Scholar 

  40. M. A. Vyvoda, M. Li, and D. B. Graves, J. Vac. Sci. Technol., A 17, 3293 (1999).

    Article  Google Scholar 

  41. J. Matsui, N. Nakano, Z. L. Petrovic, and T. Makabe, Appl. Phys. Lett. 78, 883 (2001).

    Article  Google Scholar 

  42. A. P. Palov, Yu. A. Mankelevich, T. V. Rakhimova, and D. Shamiryan, Plasma Phys. Rep. 36, 891 (2010).

    Article  Google Scholar 

  43. V. Ishchuk, B. E. Volland, M. Hauguth, et al., J. Appl. Phys. 112, 084308 (2012).

    Article  Google Scholar 

  44. I. W. Rangelow, J. Vac. Sci. Technol., A 21, 1550 (2003).

    Article  Google Scholar 

  45. B. Jinnai, S. Fukuda, H. Ohtake, and S. Samukawa, J. Appl. Phys. 17, 043302 (2010).

    Article  Google Scholar 

  46. X. Zhao and J. A. del Alamo, IEEE Electron. Device Lett. 35, 521 (2014).

    Article  Google Scholar 

  47. V. P. Tarakanov and E. G. Shustin, Vacuum 113, 59 (2015).

    Article  Google Scholar 

  48. A. Goodyear, D. Olynick, S. Mackenzie, and E. Anderson, J. Vac. Sci. Technol., B 18, 3471 (2000).

    Article  Google Scholar 

  49. S. F. Gilmartin, K. Arshak, D. Bain, et al., Microelectron. Eng. 87, 634 (2010).

    Article  Google Scholar 

  50. H. Ohtake, K. Noguchi, S. Samukawa, et al., J. Vac. Sci. Technol., B 18, 2495 (2000).

    Article  Google Scholar 

  51. Y. Ishikawa, M. Okigawa, S. Yamazaki, and S. Samukawa, J. Vac. Sci. Technol. B 23, 389 (2005).

    Article  Google Scholar 

  52. T. Ohchi, S. Kobayashi, M. Fukasawa, et al., Jpn. J. Appl. Phys. 47, 532 (2008).

    Article  Google Scholar 

  53. K. P. Giapis, T. A. Moore, and T. K. Mintona, J. Vac. Sci. Technol., A 13, 959 (1995).

    Article  Google Scholar 

  54. M. J. Groeckner, T. K. Bennett, and S. A. Cohen, Appl. Phys. Lett. 71, 980 (1997).

    Article  Google Scholar 

  55. S. Panda and D. J. Economou, J. Vac. Sci. Technol., A 19, 398 (2001).

    Article  Google Scholar 

  56. S. Samukawa, K. Sakamoto, and K. Ichiki, J. Vac. Sci. Technol., A 20, 1566 (2002).

    Article  Google Scholar 

  57. A. Ranjan, V. M. Donnelly, and D. J. Economou, J. Vac. Sci. Technol., A 20, 1839 (2006).

    Article  Google Scholar 

  58. D. H. Lee, J. W. Bae, S. D. Park, and G. Y. Yeom, Thin Solid Films 398–399, 647 (2001).

    Article  Google Scholar 

  59. U. Thumm, J. Ducree, P. Kurpick, and U. Wille, Nucl. Instrum. Methods Phys. Res., B 157, 11 (1999).

    Article  Google Scholar 

  60. B. J. Park, K. S. Min, S. D. Park, et al., Solid State Phenom. 124–126, 275 (2007).

    Article  Google Scholar 

  61. D. H. Lee, B. J. Park, K. S. Min, and G. Y. Yeom, J. Korean Phys. Soc. 49, 2307 (2006).

    Google Scholar 

  62. H. Ohtake, N. Inoue, T. Ozaki, and S. Samukawa, J. Vac. Sci. Technol., B 23, 210 (2005).

    Article  Google Scholar 

  63. S. Noda, T. Ozaki, and S. Samukawa, J. Vac. Sci. Technol., A 24, 1414 (2006).

    Article  Google Scholar 

  64. S. Samukawa, Appl. Surf. Sci. 253, 6681 (2007).

    Article  Google Scholar 

  65. J. K. Kim, S. I. Cho, S. H. Lee, et al., J. Vac. Sci. Technol., A 31, 061302 (2013).

    Article  Google Scholar 

  66. H. Lee, K. Shin, N. Cho, et al., Thin Film Solids 517, 3844 (2009).

    Article  Google Scholar 

  67. C. Petit-Etienne, M. Darnon, L. Vallier, et al., J. Vac. Sci. Technol. B 28, 926 (2010).

    Article  Google Scholar 

  68. K. J. Kanarik, T. Lill, E. A. Hudson, et al., J. Vac. Sci. Technol., A 33, 020802 (2015).

    Article  Google Scholar 

  69. S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol., B 14, 3702 (1996).

    Article  Google Scholar 

  70. J. D. Jones, R. K. Shah, G. F. Verbeck, and J. M. Perez, Small 8, 1066 (2012).

    Article  Google Scholar 

  71. W. S. Lim, Y. Y. Kim, H. Kim, et al., Carbon 50, 429 (2012).

    Article  Google Scholar 

  72. V. B. Aleskovskii, Zh. Prikl. Khim. 47, 2145 (1974).

    Google Scholar 

  73. T. Suntola and J. Antson, US Patent, No. 4,058,430 (1977).

    Google Scholar 

  74. S. M. George, Chem. Rev. 110, 111 (2010).

    Article  Google Scholar 

  75. R. W. Johnson, A. Hultqvist, and S. F. Bent, Mater. Today 17, 236 (2014).

    Article  Google Scholar 

  76. Y. Zhang, W. Ren, Z. Jiang, et al., J. Mater. Chem. 2, 7570 (2014).

    Article  Google Scholar 

  77. http://www.picosun.com/ru/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Shustin.

Additional information

Original Russian Text © E.G. Shustin, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 5, pp. 427–439.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shustin, E.G. Plasma technologies for material processing in nanoelectronics: Problems and solutions. J. Commun. Technol. Electron. 62, 454–465 (2017). https://doi.org/10.1134/S106422691704012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691704012X

Navigation