Skip to main content

Thermal Plasma Processes and Nanomaterial Preparation

  • Chapter
  • First Online:
Nanotechnology for Energy and Environmental Engineering

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Plasma here refers to the fourth state of matter which has wide-ranging applications—right from industrial to biomedical. A word of caution: The term “plasma” should not be mixed up with the blood “plasma”—which is entirely different from the fourth state of matter—the subject area of this chapter. The interaction of this plasma—fourth state of matter—with the first (and to some extent the second state as well) state of matter is an area that brings about vast application potential. Primarily the energy content in a plasma state is orders of magnitude higher than the energy content of the other three states of matter. This large energy content is what is used for various applications mentioned above. This chapter contains in brief the basics of plasmas, types of plasma and nanoscience, and then describes in detail how plasmas can be used for various material processing—especially preparation of nanomaterials. Care has been taken to provide more experimental details in a simple flowing language. Images (mostly related to the author’s own work) have been included for better clarity and easy understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Balasubramanian C et al (2004) Synthesis of nanowires and nanoparticles of cubic aluminium nitride. Nanotechnology 15:370–373

    Article  CAS  Google Scholar 

  • Balasubramanian C, Bellucci S, Castrucci P, De Crescenzi M, Bhoraskar SV (2004) Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem Phys Lett 383:188–191

    Article  CAS  Google Scholar 

  • Balasubramanian C et al (2016) Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature. Nanotechnology 27:445701

    Article  CAS  Google Scholar 

  • Banerjee I et al (2006) Preparation of c-Fe2O3 nanoparticles using DC thermal arc-plasma route, their characterization and magnetic properties. Scr Mater 54:1235–1240

    Article  CAS  Google Scholar 

  • Bhave TM et al (2005) Oriented growth of nanocrystalline gamma ferric oxide in electrophoretically deposited films. Hyperfine Interact 160:199–209

    Article  CAS  Google Scholar 

  • Castrucci P et al (2006) Silicon nanotubes: synthesis and characterization. Thin Solid Films 508:226–230

    Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  • De Crescenzi M et al (2005) Experimental imaging of silicon nanotubes. Appl Phys Lett 86:231901

    Article  Google Scholar 

  • Dokhale PA, Sali ND, Kumar PM, Bhoraskar SV, Rohatgi VK, Bhoraskar VN, Badrinarayanan S, Date SK (1997) Mater Sci Eng B 49:18

    Google Scholar 

  • Fauchais P et al (2008) Thermal plasma applications. High Temp Mater Process 12:165–203

    Article  Google Scholar 

  • Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48:1331–1337

    Article  CAS  Google Scholar 

  • Koushika EM, Shanmugavelayutham G, Saravanan P, Balasubramanian C (2018) Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Mater Manuf Process 33:1701–1707

    Article  CAS  Google Scholar 

  • Kumar PM, Borse P, Rohatgi VK, Bhoraskar SV, Singh P, Sastry M (1994) Mater Chem Phys 36:354

    Google Scholar 

  • Kumar V et al (2008) Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J Phys Chem C 112:17750

    Article  CAS  Google Scholar 

  • Lee C-H, Rai P, Moon S-Y, Yu Y-T (2016) Thermal plasma synthesis of Si/SiC nanoparticles from silicon and activated carbon powders. Ceram Int 42:16469–16473

    Google Scholar 

  • Madhu Kumar P, Balasubramanian C, Sali ND, Bhoraskar SV, Rohatgi VK, Badrinarayanan S (1999) Nanophase alumina synthesis in thermal arc plasma and characterization: correlation to gas-phase studies. Mater Sci Eng, B 63:215–227

    Article  Google Scholar 

  • Meng H, Zhao F, Zhang Z (2012) Preparation of cobalt nanoparticles by direct current arc plasma evaporation method. Int J Refract Met Hard Mater 31:224

    Article  CAS  Google Scholar 

  • Orpe PB, Balasubramanian C, Mukherjee S (2017) Influence of DC arc current on the formation of cobalt-based nanostructures. Pramana J Phys 89:20

    Article  Google Scholar 

  • Patel J, Balasubramanian C, Sasmal C, Satyaprasad A (2018) Preparation of SiC nanowires and nanotubes by thermal arc plasma and study of parameters controlling its growth. Phys E 103:377–382

    Google Scholar 

  • Raut SA et al (2018) Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties. J Mag Mag Mater 449:232–242

    Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotech 2:3

    Article  Google Scholar 

  • Sergiienko R et al (2007) Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol. Acta Mater 55:3671

    Article  CAS  Google Scholar 

  • Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys D Appl Phys 40:2407–2419

    Article  CAS  Google Scholar 

  • Siegmann S, Girshick S, Szépvölgyi J, Leparoux M, Shin J-W, Schreuders C, Rohr L, Ishigaki T, Jurewicz JW, Habib M, Baroud G, Gitzhofer F, Kambara M, Diaz JMA, Yoshida T (2008) Nano powder synthesis by plasmas. Report of the session held at the international round table on thermal plasma fundamentals and applications: Sharm el Sheikh, Egypt, Jan. 14–18, 2007, High Temp. Mater. Processes, 12:205–254

    Google Scholar 

  • Tondare VN, Balasubramanian C, Shende SV, Joag DS, Godbole VP, Bhoraskar SV (2002) Field emission from open ended aluminum nitride nanotubes. Appl Phys Lett 80:4813–4815

    Article  CAS  Google Scholar 

  • Tsai P-C, Chen W-J, Chen J-H, Chang C-L (2009) Deposition and characterization of TiBCN films by cathodic arc plasma evaporation. Thin Solid Films 517:5044–5049

    Article  CAS  Google Scholar 

  • Wan X, Fan Y, Ma W, Li S, Huang X, Yu J (2018) One-step synthesis of nano-silicon/graphene composites using thermal plasma approach. Mater Lett 220:144–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Balasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramanian, C. (2020). Thermal Plasma Processes and Nanomaterial Preparation. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics