Skip to main content
Log in

Lattice Dynamics of BCC Titanium and Its Nonlinear Response to High Temperature Deformations in Ab Initio Molecular Dynamics

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using the ab initio molecular dynamics method, the dynamics of the bcc titanium lattice and its response to high temperature deformations are studied. The results of calculation of phonon spectra with use of the harmonic Hamiltonian and the Hamiltonian containing third-order force constants are compared. It is shown that the lattice dynamics of bcc titanium cannot be correctly described without taking into account the anharmonic terms. Stress–strain curves are calculated for specified deformation scheme η1 = η11 = η, η6 = 2η12= η. Analytical expressions of the dependence of the nonzero components of the stress tensor on the strain magnitude are given for this deformation scheme, which take into account the elastic constants up to the fourth order inclusive. All second-order elastic constants, three third-order elastic constants, and four fourth-order elastic constants of bcc titanium are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. Bartosik, C. Rumeau, R. Hahn, Z. L. Zhang, and P. H. Mayrhofer, Sci. Rep. 7, 16476 (2017).

    Article  ADS  Google Scholar 

  2. I. Polmear, D. St. John, J.-F. Nie, and M. Qian, Light Alloys (Elsevier, Oxford, 2017), p. 369.

    Google Scholar 

  3. M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens, Adv. Eng. Mater. 5, 419 (2003).

    Article  Google Scholar 

  4. T. M. Pollock, Nat. Mater. 15, 809 (2016).

    Article  ADS  Google Scholar 

  5. Q. Zhang, M. Zheng, Y. Huang, H. J. Kunte, X. Wang, Y. Liu, and C. Zheng, Sci. Rep. 9, 3195 (2019).

    Article  ADS  Google Scholar 

  6. P. Souvatzis, O. Eriksson, M. I. Katsnelson, and S. P. Rudin, Phys. Rev. Lett. 100, 095901 (2008).

    Article  ADS  Google Scholar 

  7. G. Grimvall, B. Magyari-Köpe, V. Ozolinš, and K. A. Persson, Rev. Mod. Phys. 84, 945 (2012).

    Article  ADS  Google Scholar 

  8. A. V. Shapeev, E. V. Podryabinkin, K. Gubaev, F. Tasnádi, and I. A. Abrikosov, New J. Phys. 22, 113005 (2020).

    Article  ADS  Google Scholar 

  9. Y. Hiki, Ann. Rev. Mater. Sci. 11, 51 (1981).

    Article  ADS  Google Scholar 

  10. H. Ledbetter, H. Ogi, S. Kai, S. Kim, and M. Hirao, J. Appl. Phys. 95, 4642 (2004).

    Article  ADS  Google Scholar 

  11. E. Fisher and D. Dever, Science, Technology, and Application of Titanium (Pergamon, New York, 1970), p. 373.

    Google Scholar 

  12. W. Petry, A. Heimig, J. Trampenau, M. Alba, C. Herzig, H. Schrober, and G. Vogl, Phys. Rev. B 43, 10933 (1991).

    Article  ADS  Google Scholar 

  13. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  14. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  15. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  16. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  17. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  19. M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  ADS  Google Scholar 

  20. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  21. S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991).

    Article  ADS  Google Scholar 

  22. O. Hellman, I. A. Abrikosov, and I. A. Simak, Phys. Rev. B 84, 180301 (2011).

    Article  ADS  Google Scholar 

  23. O. Hellman and I. A. Abrikosov, Phys. Rev. B 88, 144301 (2013).

    Article  ADS  Google Scholar 

  24. R. A. Cowley, Rep. Prog. Phys. 31, 123 (1968).

    Article  ADS  Google Scholar 

  25. A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).

    Article  ADS  Google Scholar 

  26. Yu. Kh. Vekilov, O. M. Krasilnikov, A. V. Lugovskoy, and Yu. E. Lozovik, Phys. Rev. B 94, 104114 (2016).

    Article  ADS  Google Scholar 

  27. F. F. Voronov, V. M. Prohorov, E. L. Gromnickaya, and G. G. Ilina, Phys. Met. Metallogr. 45, 1263 (1978).

    Google Scholar 

  28. O. M. Krasilnikov, M. P. Belov, A. V. Lugovskoy, I. Y. Mosyagin, and Y. K. Vekilov, Comput. Mater. Sci. 81, 313 (2014).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 21-72-10105). The calculations were performed using the computer cluster of National University of Science and Technology “MISiS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Belov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, M.P., Sinyakov, R.I. Lattice Dynamics of BCC Titanium and Its Nonlinear Response to High Temperature Deformations in Ab Initio Molecular Dynamics. Phys. Solid State 64, 229–233 (2022). https://doi.org/10.1134/S1063783422060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422060014

Keywords:

Navigation