Skip to main content
Log in

A Molecular Dynamics Based Comparison of the Mechanical Properties of Three Polytypes of Cubic BC3

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

In this work molecular dynamics simulations are employed to compare the mechanical properties and hardness of three polytypes of cubic BC3. Firstly, two interatomic Tersoff potentials, with different parameterizations, were identified from the literature for the boron-carbon system. Based on cohesive energies and structural properties from existing ab-initio studies, the suitability of the two potentials for predicting the properties of BC3 was analyzed. Secondly, using the better interatomic potential, more detailed molecular dynamics simulations were conducted to estimate and compare the elastic, yield, post-yield behavior and hardness of the three polytypes. The elastic constants compare well with existing abinitio values and vary by at most by 15% amongst the three polytypes. Response to indentation showed considerable qualitative differences in yield and post-yield response. One of the polytypes showed lower yield strength and seemed more ductile than the other two. The hardness also showed a complex dependence on both the material and the indentation depths. A peculiar, indenter-size dependent pile-up behavior was also seen. Specifically, for lower radii, pile-up was seen on indentation. As the radius of the indenter was increased, pile-up was seen only on retracting the indenter. The higher volume occupied by the indentation-amorphized material was found to be the reason for pile-up on retracting the indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veprek, S., The search for novel, superhard materials, J. Vacuum Sci. & Tech. A, 1999, vol. 17, no. 5, pp. 2401–2420.

    Article  CAS  Google Scholar 

  2. Oganov, A.R. and Solozhenko, V.L., Boron: a hunt for superhard polymorphs, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 285–291.

    Article  Google Scholar 

  3. He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T., and Zerda, T., Boron suboxide: As hard as cubic boron nitride, Appl. Phys. Lett., 2002, vol. 81, no. 4, pp. 643–645.

    Article  CAS  Google Scholar 

  4. Wentorf, R., Jr, Synthesis of the cubic form of boron nitride, J. Chem Phys., 1961, vol. 34, no. 3, pp. 809–812.

    Article  CAS  Google Scholar 

  5. Zhao, Y., He, D., Daemen, L., Shen, T., Schwarz, R., Zhu, Y., Bish, D., Huang, J., Zhang, J., Shen, G., et al., Superhard B-C-N materials synthesized in nanostructured bulks, J. Mater. Res., 2002, vol. 17, no. 12, pp. 3139–3145.

    Article  CAS  Google Scholar 

  6. Zinin, P., Ming, L., Ishii, H., Jia, R., Acosta, T., and Hellebrand, E., Phase transition in BCx system under high-pressure and high-temperature: Synthesis of cubic dense BC3 nanostructured phase, J. Appl. Phys., 2012, vol. 111, no. 11, art. 114905.

    Google Scholar 

  7. Solozhenko, V. L., Kurakevych, O. O., Andrault, D., Le Godec, Y., and Mezouar, M., Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, art. 015506.

    Google Scholar 

  8. Crowther, P., Dean, P., and Sherman, W., Excitation spectrum of aluminum acceptors in diamond under uniaxial stress, Phys. Rev., 1967, vol. 154, no. 3, pp. 772–785.

    Article  CAS  Google Scholar 

  9. Ekimov, E., Sidorov, V., Bauer, E., Mel’nik, N., Curro, N., Thompson, J., and Stishov, S., Superconductivity in diamond, Nature, 2004, vol. 428, no. 6982, pp. 542–545.

    Article  CAS  Google Scholar 

  10. Swain, G. M. and Ramesham, R., The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes, Anal. Chem., 1993, vol. 65, no. 4, pp. 345–351.

    Article  CAS  Google Scholar 

  11. Mikhaylushkin, A.S., Zhang, X., and Zunger, A., Crystal structures and metastability of carbon-boron compounds C3B and C5B, Phys. Rev. B, 2013, vol. 87, no. 9, art. 094103.

    Google Scholar 

  12. Lowther, J.E., Potential super-hard phases and the stability of diamond-like boron-carbon structures, J. Phys.: Condens. Matter., 2005, vol. 17, no. 21, pp. 3221–3229.

    CAS  Google Scholar 

  13. Liu, Z., He, J., Yang, J., Guo, X., Sun, H., Wang, H.-T., Wu, E. and Tian, Y., Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations, Phys. Rev. B, 2006, vol. 73, no. 17, art. 172101.

    Google Scholar 

  14. Liu, H., Li, Q., Zhu, L., and Ma, Y., Superhard and superconductive polymorphs of diamond-like BC3, Phys. Lett. A, 2011, vol. 375, no. 3, pp. 771–774.

    Article  CAS  Google Scholar 

  15. Ma, M., Yang, B., Li, Z., Hu, M., Wang, Q., Cui, L., Yu, D., and He, J., A metallic superhard boron carbide: first-principles calculations, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 9748–9751.

    Article  CAS  Google Scholar 

  16. Li, Q., Wang, H., Tian, Y, Xia, Y., Cui, T., He, J., Ma, Y., and Zou, G., Superhard and superconducting structures of BC5, J. Appl. Phys., 2010, vol. 108, art. 023507.

  17. Liang Y., Zhang W., Zhao J., and Chen L., Super hardness, stability, and metallicity of diamond-like BC5: density functional calculations, Phys. Rev. B, 2009, vol. 80, no. 11, art. 113401.

    Google Scholar 

  18. Lazar, P. and Podloucky, R., Mechanical properties of superhard BC5, Appl. Phys. Lett., 2009, vol. 94, no. 25, art. 251904–3.

    Google Scholar 

  19. Zhang, M., Liu, H., Li, Q., Gao, B., Wang, Y., Li, H., Chen, C., and Ma, Y., Superhard BC3 in cubic diamond structure, Phys. Rev. Lett., 2015, vol. 114, no. 1, art. 015502.

    Google Scholar 

  20. Yan, Q., Wang, B., Wang, Y. X., Yang, J., Yang, G., et al., Predicted boron-carbide compounds: A first-principles study, J. Chem. Phys., 2014, vol. 140, no. 22, art. 224704.

    Google Scholar 

  21. Yang, J., Sun, H., He, J., Tian, Y., and Chen, C., Diamond-like BC3 as a superhard conductor identified by ideal strength calculations, J. Phys.: Condens. Matter., 2007, vol. 34, no. 19, art. 346223.

    Google Scholar 

  22. Du, X., Zhao, H., Zhang, L., Yang, Y., Xu, H., Fu, H., and Li, L., Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature, Sci. Rep., 2015, vol. 5, art. 16275.

  23. Swaminathan, N., Kamenski, P. J., Morgan, D., Szlufarska, I., Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC, Acta Mater., 2010, vol. 58, no. 8, pp. 2843–2853.

    Article  CAS  Google Scholar 

  24. Nkambule, S.M. and Lowther, J., Crystalline and random diamond-like boron-carbon structures, Solid State Commun., 2010, vol. 150, no. 1, pp. 133–136.

    Article  CAS  Google Scholar 

  25. Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 1988, vol. 61, no. 25, pp. 2879.

    Article  CAS  Google Scholar 

  26. Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 1989, vol. 39, no. 8, pp. 5566–5568.

    Article  CAS  Google Scholar 

  27. Matsunaga, K., Fisher, C., and Matsubara, H., Tersoff potential parameters for simulating cubic boron carbonitrides, Jap. J. Appl. Phys., 2000, vol. 39, Pt. 2, no. 1A/B, pp. L48–L51.

    Article  CAS  Google Scholar 

  28. Kinaci, A., Haskins, J. B., Sevik, C., and Cagin, T., Thermal conductivity of BN-C nanostructures, Phys. Rev. B, 2012, vol. 86, no. 11, art. 115410.

    Google Scholar 

  29. Letsoalo, T. and Lowther, J., Elastic and thermodynamic properties of potentially superhard carbon boride materials, J. Superhard Mater., 2012, vol. 34, no. 1, pp. 28–36.

    Article  Google Scholar 

  30. Schuh, C. A., Nanoindentation studies of materials, Mater. Today, 2006, vol. 9, no. 5, pp. 32–40.

    Article  CAS  Google Scholar 

  31. Oliver, W.C. and Pharr G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  CAS  Google Scholar 

  32. Lund, A.C., Hodge, A. M. and Schuh, C. A., Incipient plasticity during nanoindentation at elevated temperatures, Appl. Phys. Lett., 2004, vol. 85, no. 8, pp. 1362–1364.

    Article  CAS  Google Scholar 

  33. Nair, A. K., Parker, E., Gaudreau, P., Farkas, D., and Kriz, R.D., Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study, Int. J. Plasticity, 2008, vol. 24, no. 11, pp. 2016–2031.

    Article  CAS  Google Scholar 

  34. Liu, C.-L., Fang, T.-H., and Lin, J.-F., Atomistic simulations of hard and soft films under nanoindentation, Mater. Sci. Eng. A, 2007, vol. 452, pp. 135–141.

    Article  Google Scholar 

  35. Goel, S., Joshi, S.S., Abdelal, G., and Agrawal, A., Molecular dynamics simulation of nano- indentation of Fe3C and Fe4C, Mater. Sci. Eng. A, 2014, vol. 597, pp. 331–341.

    Article  CAS  Google Scholar 

  36. Jang, J.-I., Lance, M., Wen, S., Tsui, T. Y., and Pharr G., Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior, Acta Mater., 2005, vol. 53, no. 6, pp. 1759–1770.

    Article  CAS  Google Scholar 

  37. Szlufarska, I., Kalia, R.K., Nakano, A., and Vashishta, P., Nanoindentation induced amorphization in silicon carbide, Appl. Phys. Lett., 2004, vol. 85, no. 3, pp. 378–380.

    Article  CAS  Google Scholar 

  38. Kucharski, S. and Mroz, Z., Identification of plastic hardening parameters of metals from spherical indentation tests, Mater. Sci. Eng., 2001, vol. A 318, no. 1, pp. 65–76.

    Article  CAS  Google Scholar 

  39. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 1995, vol. 117, no. 1, pp. 1–19.

    Article  CAS  Google Scholar 

  40. Stukowski, A., Visualization and analysis of atomistic simulation data with ovito the open visualization tool, Modelling and Simulation in Mater. Sci. Eng., 2009, vol. 18, no. 1, art. 015012.

    Google Scholar 

  41. Humphrey, W., Dalke, A., and Schulten, K., VMD: visual molecular dynamics, J. Mol. Graph., 1996, vol. 14, no. 1, pp. 33–38.

    Article  CAS  Google Scholar 

  42. Kelchner, C. L., Plimpton, S., and Hamilton, J., Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B, 1998, vol. 58, no. 17, pp. 11085–11088.

    Article  CAS  Google Scholar 

  43. Mulford, R., Asaro, R. J., and Sebring, R.J., Spherical indentation of ductile power law materials, J. Mater. Res., 2004, vol. 19, no. 9, pp. 2641–2649.

    Article  CAS  Google Scholar 

  44. Bolshakov, A. and Pharr, G., Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res., 1998, vol. 13, no. 4, pp. 1049–1058.

    Article  CAS  Google Scholar 

  45. Alcala, J., Giannakopoulos, A., and Suresh, S., Continuous measurements of load-penetration curves with spherical micro indenters and the estimation of mechanical properties, J. Mater. Res., 1998, vol. 13, no. 5, pp. 1390–1400.

    Article  CAS  Google Scholar 

  46. Li, D., Wang, F., Yang, Z., and Zhao, Y., How to identify dislocations in molecular dynamics simulations?, Sci. China Phys. Mech. Astron., 2014, vol. 57, no. 12, pp. 2177–2187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Swaminathan.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, E., Swaminathan, N. A Molecular Dynamics Based Comparison of the Mechanical Properties of Three Polytypes of Cubic BC3. J. Superhard Mater. 41, 69–83 (2019). https://doi.org/10.3103/S1063457619020011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619020011

Keywords

Navigation