Skip to main content
Log in

Modulational Collapsing and Adjusting with External Potential in a Complex Nonlinear Plasma

  • PLASMA INSTABILITIES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

Modulational collapse of a wave pulse in a complex nonlinear plasma described by a complex nonlinear Schrödinger equation (CNSE) including the effects of viscous heating and nonlinear damping, and the adjusting by an external potential are investigated. Theoretical and numerical results reveal that the original pulse first suffers modulational instability, the growth rate of the modulational instability increases with the increase of viscous heating, but it is not sensitive to the nonlinear damping. The instability induces the self-similar collapsing, then the fields rapidly transform into a turbulent state with short-wavelength modes. The results are explained in terms of the evolution of the total energy, which can become invariant during the evolution even though the system is nonconservative. The external potential can delay the self-defocusing process of the pulse. Those results can apply to the phenomena described by the CNSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. E. Zakharov, Sov. Phys.-JETP 35, 908 (1972).

    ADS  Google Scholar 

  2. M. V. Goldman, Rev. Mod. Phys. 56, 709 (1984).

    Article  ADS  Google Scholar 

  3. S. L. Musher, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 252, 177 (1995).

    Article  ADS  Google Scholar 

  4. C. Sulem and P.-L. Sulem, Nonlinear Schrödinger Equation (Springer-Verlag, New York, 1999).

    MATH  Google Scholar 

  5. Y. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 117 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. L. Bergé, Phys. Rep. 303, 259 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Y. Wong and P. Y. Cheung, Phys. Rev. Lett. 52, 1222 (1984).

    Article  ADS  Google Scholar 

  8. C. A. Sackett, J. M. Gerton, M. Welling, and R. G. Hu-let, Phys. Rev. Lett. 82, 876 (1999).

    Article  ADS  Google Scholar 

  9. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  10. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  11. Z. H. Chen, X. S. Yang, X. C. Chen, H. Chen, and S. Q. Liu, Phys. Plasmas 23, 052303 (2016).

  12. Z. H. Chen, X. S. Yang, H. Chen, and S. Q. Liu, Phys. Scr. 90, 055003 (2015).

  13. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  14. L. Stenflo, J. Phys. A: Math. Gen. 21, L499 (1988).

    Article  ADS  Google Scholar 

  15. P. A. Robinson, Rev. Mod. Phys. 69, 507 (1997).

    Article  ADS  Google Scholar 

  16. L. Wang, M. Li, F. H. Qi, and T. Xu, Phys. Plasmas 22, 032308 (2015).

  17. J. M. Soto-Crespo, N. Devine, and N. Akhmediev, Phys. Rev. Lett. 116, 103901 (2016).

  18. N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Zhao and M. Y. Yu, Phys. Rev. E 83, 036405 (2011).

  20. D. Zhao, L. P. Tian, S. Y. Cui, and M. Y. Yu, Phys. Scr. 86, 035501 (2012).

  21. S. Y. Cui, M. Y. Yu, and D. Zhao, Phys. Rev. E 87, 053104 (2013).

  22. I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).

    Article  ADS  Google Scholar 

  23. C. T. Zhou, M. Y. Yu, and X. T. He, Phys. Rev. E 73, 026209 (2006).

  24. T. W. Johnston, F. Vidal, and D. Fréchette, Phys. Plasmas 4, 1582 (1997).

    Article  ADS  Google Scholar 

  25. C. Ren, R. G. Hemker, R. A. Fonseca, B. J. Duda, and W. B. Mori, Phys. Rev. Lett. 85, 2124 (2000).

    Article  ADS  Google Scholar 

  26. O. Shorokhov, A. Pukhov, and I. Kostyukov, Phys. Rev. Lett. 91, 265002 (2003).

  27. P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation (Springer-Verlag, Berlin, Heidelberg, 2009).

    Book  Google Scholar 

  28. G. Fibich, The Nonlinear Schrödinger Equation (Springer International Publishing Switzerland, Heidelberg, 2015).

    Book  Google Scholar 

  29. L. Wang, M. Li, F. H. Qi, and C. Geng, Eur. Phys. J. D 69, 108 (2015).

    Article  ADS  Google Scholar 

  30. D. S. Montgomery, Phys. Plasmas 23, 055601 (2016).

  31. X. Q. Li, H. Zhang, and Q. B. Li, Astron. Astrophys. 304, 617 (1995).

    ADS  Google Scholar 

  32. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes (Cambridge Univ. Press, Cambridge, 1992).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (project nos. 11863004, 11847144, 11763006, and 11847023), the Natural Science Foundation of Jiangxi Province (project no. 20181BAB 201019), the Jiangxi Province Key Laboratory of Fusion and Information Control (project no. 20171BCD40005), and Shanghai Key Lab for Astrophysics (no. SKLA1604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. S. Yang, Z. H. Chen, B. Wang or S. Q. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X.S., Chen, Z.H., Wang, B. et al. Modulational Collapsing and Adjusting with External Potential in a Complex Nonlinear Plasma. Plasma Phys. Rep. 46, 815–822 (2020). https://doi.org/10.1134/S1063780X20080115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20080115

Keywords:

Navigation