Skip to main content
Log in

Modulational instability of ion acoustic excitations in a plasma with a \(\kappa\)-deformed Kaniadakis electron distribution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we make use of the \(\kappa\)-deformed Kaniadakis distribution in the context of modulational instability (MI) of ion acoustic waves (IAWs) in a plasma assumed to be collisionless and unmagnetized, consisting of inertial ions and non-Maxwellian electrons. Through the multiscale perturbation method, the basic model equations are reduced to a nonlinear Schrödinger equation, based on which the MI and the growth rate of envelope excitations are calculated. It is shown that the deformation parameter \(\kappa\), which develops the Kaniadakis entropy, affects the conditions for MI and thus modifies the associated threshold as well as the growth rate. The deviation from Maxwellian distribution, i.e., the presence of Kaniadakis distributed electrons, reinforces the instability. The critical wave number shows diminishing behavior with higher values of \(\kappa\), suggesting that the MI sets in for lower values of wave number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The authors declare that all data supporting the present study are available within the article.

References

  1. A. Renyi, Acta Math. Hung. 6, 285 (1955)

    Article  Google Scholar 

  2. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  3. C. Tsallis, L.J.L. Cirto, Eur. Phys. J. C 73, 2487 (2013)

    Article  ADS  Google Scholar 

  4. P. Douglas, S. Bergamini, F. Renzoni, Phys. Rev. Lett. 96, 110601 (2006)

    Article  ADS  Google Scholar 

  5. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  6. G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.M. Teweldeberhan, H.G. Miller, G. Tegen, Int. J. Mod. Phys. E 12, 669 (2003)

    Article  ADS  Google Scholar 

  8. T.S. Biro, G. Kaniadakis, Eur. Phys. J. B 50, 3 (2006)

    Article  ADS  Google Scholar 

  9. G. Kaniadakis, M.M. Baldi, T.S. Deisboeck, G. Grisolia, D.T. Hristopulos, A.M. Scarfone, A. Sparavigna, T. Wada, U. Lucia, Sci. Rep. 10, 19949 (2020)

    Article  ADS  Google Scholar 

  10. G. Kaniadakis, EPL 133, 10002 (2021)

    Article  ADS  Google Scholar 

  11. I. Lourek, M. Tribeche, Phys. A 441, 215–220 (2016)

    Article  MathSciNet  Google Scholar 

  12. M. Khalid, A. Khan, M. Khan, F. Hadi, A. Rahman, Braz. J. Phys. 51, 60 (2021)

    Article  ADS  Google Scholar 

  13. S.N. Naeem, A. Qamar, M. Khalid, A. Rahman, Eur. Phys. J. Plus 136, 1205 (2021)

    Article  Google Scholar 

  14. L.A. Gougam, M. Tribeche, Phys. Plasmas 23, 014501 (2016)

    Article  ADS  Google Scholar 

  15. A. Saha, J. Tamang, Phys. Plasmas 24, 082101 (2017)

    Article  ADS  Google Scholar 

  16. M. Khalid, S.A. El-Tantawy, A. Rahman, Astrophys. Space Sci. 365, 75 (2020)

    Article  ADS  Google Scholar 

  17. T. Taniuti, N. Yajima, J. Math. Phys. 10, 1369 (1969)

    Article  ADS  Google Scholar 

  18. N. Asano, T. Taniuti, N. Yajima. J. Math. Phys. 10, 2020 (1969)

    Article  ADS  Google Scholar 

  19. N.S. Saini, I. Kourakis. Phys. Plasmas 15, 123701 (2008)

    Article  ADS  Google Scholar 

  20. R. Sabry, W.M. Moslem, E.F. El-Shamy, P.K. Shukla, Phys. Plasmas 18, 032302 (2011)

    Article  ADS  Google Scholar 

  21. S.A. El-Tantawy, A.M. Wazwaz, A. Rahman. Phys. Plasmas 24, 022126 (2017)

    Article  ADS  Google Scholar 

  22. S. Watanabe, J. Plasma Phys. 17, 487 (1977)

    Article  ADS  Google Scholar 

  23. A. Rahman, M. McKerr, W.F. El-Taibany, I. Kourakis, A. Qamar, Phys. Plasmas 22, 022305 (2015)

    Article  ADS  Google Scholar 

  24. M. Khalid, F. Hadi, A. Rahman, Eur. Phys. J. Plus 136, 1061 (2021)

    Article  Google Scholar 

  25. K. ShaliniK, N.S. Saini, A.P. Misra, Phys. Plasmas 22, 092124 (2015)

    Article  ADS  Google Scholar 

  26. H. Alinejad, M. Mahdavi, M. Shahmansouri, Astrophys. Space Sci. 352, 571–578 (2014)

    Article  ADS  Google Scholar 

  27. A.S. Bains, A.P. Misra, N.S. Saini, T.S. Gill, Phys. Plasmas 17, 012103 (2010)

    Article  ADS  Google Scholar 

  28. A.S. Bains, B. Li, M. Tribeche, Phys. Plasmas 20, 092119 (2013)

    Article  ADS  Google Scholar 

  29. G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Shimizu, H. Ichikawa, J. Phys. Soc. Japan 33, 789 (1972)

    Article  ADS  Google Scholar 

  31. A. Hasegawa, Phys. Rev. A 1, 1746 (1970)

    Article  ADS  Google Scholar 

  32. A. Hasegawa, Phys. Fluids 15, 870 (1972)

    Article  ADS  Google Scholar 

  33. Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer International Publishing Switzerland, 2016)

    Book  Google Scholar 

  34. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, 2005)

    MATH  Google Scholar 

  35. R. Fedele, Phys. Scr. 65, 502 (2002)

    Article  ADS  Google Scholar 

  36. I. Kourakis, P.K. Shukla, Nonlinear Proc. Geophys. 12, 407 (2005)

    Article  ADS  Google Scholar 

  37. G. Lapenta, S. Markidis, A. Marocchino, G. Kaniadakis, Astrophys. J. 666, 949 (2007)

    Article  ADS  Google Scholar 

  38. J.C. Carvalho, J.D. Do Nascimento, R. Silva, J.R. De Medeiros, Astrophys. J. Lett. 696, L48 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the constructive suggestions of an anonymous referee which considerably improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata-ur-Rahman.

Appendix

Appendix

Here the coefficients for the second-harmonic components are provided. \(\Lambda {_{2}^{0}}_{1/2/3}\) are associated with the second-order, zeroth-harmonic components of the ion density, speed and potential, respectively, while \(\Lambda {_{2}^{2}}_{1/2/3}\) stand for the second-order, second-harmonic components.

$$\begin{aligned} \Lambda _{2_{1}}^{0}&{=}\frac{-2k^{2}v_{g}\omega \left( k^{2}+1\right) ^{2}+k^{3}v_{g}^{2}-k\omega ^{2}\left( k^{2}+1\right) ^{2}}{ k^{3}\left( 1-v_{g}^{2}\right) } \nonumber \\ \Lambda _{2_{3}}^{0}&=\Lambda _{2_{1}}^{0}+1 \nonumber \\ \Lambda _{2_{2}}^{0}&=-2\frac{\omega }{k}\left( k^{2}+1\right) ^{2}+v_{g}\Lambda _{2_{3}}^{0} \end{aligned}$$
(24)
$$\begin{aligned} \Lambda _{2_{3}}^{2}&=\frac{\omega ^{2}\left[ -3\left( k^{2}+1\right) ^{2}+1 \right] }{2\left[ k^{2}-4k^{2}\omega ^{2}-\omega ^{2}\right] } \nonumber \\ \Lambda _{2_{1}}^{2}&=\left( 4k^{2}+1\right) \Lambda _{2_{3}}^{2}+1/2 \nonumber \\ \Lambda _{2_{2}}^{2}&=\frac{\omega }{k}\Lambda _{2_{1}}^{2}-\frac{\omega }{k }\left( k^{2}+1\right) ^{2}. \end{aligned}$$
(25)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, M., Khalid, M. & Ata-ur-Rahman Modulational instability of ion acoustic excitations in a plasma with a \(\kappa\)-deformed Kaniadakis electron distribution. Eur. Phys. J. Plus 137, 893 (2022). https://doi.org/10.1140/epjp/s13360-022-03098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03098-4

Navigation