Skip to main content
Log in

Synthesis of Nitrogen Oxides in a Subthreshold Microwave Discharge in Air and in Air Mixtures with Methane

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

A subthreshold discharge excited by a microwave beam in air at pressures close to atmospheric is studied as a plasmachemical method of nitrogen oxide (NOx) production. It is shown that at the energy expenditure level (2–4) kW h/m3, it is possible to produce a nitrogen oxide concentration in pure air that exceeds the concentration in the initial gas by several orders of magnitude. At the same time, it is shown that it is possible to stop nitrogen oxide production almost completely by adding an admixture of methane (CH4) to the irradiated air, which makes the so-called self-non-self-sustained (SNSS) discharge much more promising for cleaning the gaseous exhausts from urban landfills from harmful admixtures (hydrogen sulfide, mercaptans, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. G. M. Batanov, S. I. Gritsinin, I. A. Kossyi, A. N. Magunov, V. P. Silakov, and N. M. Tarasova, in Plasma Physics and Plasma Electronics, Ed. by L. M. Kovrizhnykh (Nova Science Publishers, Commack, 1985), p. 241.

    Google Scholar 

  2. I. A. Kossyi, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2006, Report AIAA-1457.

  3. G. M. Batanov, S. I. Gritsinin, and I. A. Kossyi, J. Phys. D: Appl. Phys. 35, 2687 (2002).

    Article  ADS  Google Scholar 

  4. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, I. A. Kossyi, V. I. Nefedov, K. A. Sarksyan, and N. K. Kharchev, J. Phys.: Conf. Ser. 907, 012022 (2017).

    Google Scholar 

  5. A. V. Kim and G. M. Fraiman, Sov. J. Plasma Phys. 9, 358 (1983).

    ADS  Google Scholar 

  6. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, I. A. Kossyi, V. I. Nefedov, K. A. Sarksyan, and N. K. Kharchev, Usp. Prikl. Fiz. 5 (5), 429 (2017).

  7. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, L. V. Kolik, V. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, D. V. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 44, 1146 (2018).

    Article  ADS  Google Scholar 

  8. I. A. Kossyi, K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, K. A. Sarksyan, and N. K. Kharchev, in X International Workshop on Microwave Discharges, Zvenigorod, 2018, Book of Abstracts, p. 33.

  9. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, V. D Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 45, 965 (2019).

    Article  ADS  Google Scholar 

  10. G. M. Batanov, N. K. Berezhetskaya, V. A. Kop’ev, I. A. Kossyi, and A. N. Magunov, Teplofiz. Vys. Temp. 46 (1), 135 (2008).

    Google Scholar 

  11. A. N. Magunov, Spectral Pyrometry (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  12. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

  13. G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, E. M. Konchekov, I. N. Katorgin, I. A. Kossyi,, K. A. Sarksyan, V. D Stepakhin, S. M. Temchin, and N. K. Kharchev, Prikl. Fiz., No. 5, 10 (2017).

  14. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, N. K. Kharchev, I. A. Kossyi, N. A. Kozhevnikova, K. A. Sarksyan, S. O. Sysoev, and S. M. Temchin, in Proceedings of the XXIV European Sectional Conference on Atomic and Molecular Physics of Ionized Gases, Glasgow, 2018, p. 399.

  15. G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, E. M. Konchekov, I. N. Katorgin, I. A. Kossyi, K. A. Sarksyan, V. D. Stepakhin, and S. M. Temchin, in VII Central European Symposium on Plasma Chemistry, Sveti Martin na Muri, 2017, Book of Abstracts, p. 43.

  16. S. I. Gritsinin, V. Yu. Knyazev, I. A. Kossyi, and N. A. Popov, Plasma Phys. Rep. 32, 520 (2006).

    Article  ADS  Google Scholar 

  17. G. A. Askar’yan, G. M. Batanov, D. F. Bykov, S. I. Gritsinin, I. A. Kossyi, A. Yu. Kostinskii, A. A. Matveev, and V. P. Silakov, in Tr. Inst. Obshch. Fiz. im. A.M. Prokhorova, Ross. Akad. Nauk, Ed. by L. M. Kovrizhnykh (Nauka, Moscow, 1994), V. 47, p. 9 [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-12-01352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kossyi.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artem’ev, K.V., Batanov, G.M., Berezhetskaya, N.K. et al. Synthesis of Nitrogen Oxides in a Subthreshold Microwave Discharge in Air and in Air Mixtures with Methane. Plasma Phys. Rep. 46, 311–319 (2020). https://doi.org/10.1134/S1063780X20030010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030010

Keywords:

Navigation