Skip to main content
Log in

Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures

  • INTERACTION OF WAVES WITH PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm2, while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The possibility of achieving such plasma densities in filament discharges is corroborated by both earlier studies [4] and estimates obtained in our recent works [5] dealing with spectral broadening of Hα radiation in the experiments with methane gas.

  2. The figures show average values of velocity obtained in several (3–5) different discharges at a given radiation power.

  3. Overlap of molecular bands in the spectrum complicated determination of temperature in the discharges, and the results of these measurements will be refined at a later time.

  4. Brightness of small-volume filaments at high temperature can exceed the brightness of the rest of the discharge by 2–3 orders of magnitude.

REFERENCES

  1. N. K. Kharchev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, and V. D. Stepakhin, in Proceedings of the 10th International Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” Nizhny Novgorod–Moscow,2017, p. 99.

  2. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, N. K. Kharchev, I. A. Kossyi, N. A. Kozhevnikova, K. A. Sarksyan, S. O. Sysoev, and S. M. Temchin, in Proceedings of the XXIV Europhysics Conference on Atomic and Molecular Physics of Ionized Gases, Glasgow,2018, p. 399.

  3. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, N. A. Kozhevnikova, E. M. Konchekov, I. A. Kossyi, K. A. Sarksyan, V. D. Stepakhin, S. O. Sysoev, S. M. Temchin, and N. K. Kharchev, Plasma Phys. Rep. 45, 523 (2019).

    Article  ADS  Google Scholar 

  4. S. I. Gritsinin, A. A. Dorofeyuk, I. A. Kossyi, and A. N. Magunov, Teplofiz. Vys. Temp. 25 (6), 1068 (1987).

    Google Scholar 

  5. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, A. M. Davydov, I. A. Kossyi, V. I. Nefedov, K. A. Sarksyan, and N. K. Kharchev, Usp. Prikl. Fiz. 5 (5), 429 (2017).

    Google Scholar 

  6. S. V. Golubev, S. I. Gritsinin, V. G. Zorin, I. A. Kossyi, and V. E. Semenov, in High-Frequency Discharge in Wave Fields (Institute of Applied Physics, Acad. Sci. USSR, Gorky, 1988), p. 136 [in Russian].

  7. N. A. Bogatov, Yu. Ya. Brodskii, S. V. Golubev, S. I. Gritsinin, V. G. Zorin, I. A. Kossyi, and N. M. Tarasova, Kratk. Soobshch. Fiz., No. 9, 32 (1984).

  8. V. M. Batenin, I. I. Klimovskii, G. V. Lysov, and V. N. Troitskii, Microwave Plasma Generators: Physics, Technology, and Application (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  9. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 44, 1146 (2018).

    Article  ADS  Google Scholar 

  10. A. V. Sidorov, S. V. Razin, A. P. Veselov, M. E. Viktorov, A. V. Vodopyanov, M. V. Morozkin, M. D. Proyavin, and M. Yu. Glyavin, in Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves, Paris,2019, p. 1. https://doi.org/10.1109/IRMMW-THz.2019.8873700

  11. K. Komurasaki and K. Tabata, Int. J. Aerosp. Eng. 2018, 9247429 (2018). https://doi.org/10.1155/2018/9247429

  12. Y. Nakamura, K. Komurasaki, M. Fukunari, and H. Koizumi, J. Appl. Phys. 124, 033303 (2018).

  13. A. M. Cook, J. S. Hummelt, M. A. Shapiro, and R. J. Temkin, Phys. Plasmas 18, 100704 (2011).

  14. Yu. P. Raizer, Laser Spark and Discharge Propagation (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  15. G. M. Batanov, S. I. Gritsinin, I. A. Kossyi, A. N. Magunov, V. P. Silakov, and N. M. Tarasova, in Plasma Physics and Plasma Electronics, Ed. by L.M. Kovrizhnykh (Nova Science Publishers, Commack, 1985), p. 241.

    Google Scholar 

  16. Yu. Ya. Brodskii, S. V. Golubev, V. G. Zorin, A. G. Luchinin, and V. E. Semenov, Sov. Phys.–JETP 57, 989 (1983).

    Google Scholar 

  17. Yu. Ya. Brodskii, I. P. Venediktov, S. V. Golubev, V. G. Zorin, and I. A. Kossyi, Sov. Tech. Phys. Lett. 10, 77 (1984).

    Google Scholar 

  18. A. V. Kim and G. M. Fraiman, Sov. J. Plasma Phys. 9, 358 (1983).

    ADS  Google Scholar 

  19. A. L. Vikharev, V. B. Gil’denburg, A. V. Kim, A. G. Litvak, and V. E. Semenov, in High-Frequency Discharge in Wave Fields (Institute of Applied Physics, Acad. Sci. USSR, Gorky, 1988), p. 41 [in Russian].

  20. E. Ya. Kogan and B. Yu. Kuzin, Prikl. Mekh. Tekh. Fiz., No. 3, 28 (1988).

  21. E. P. Velikhov, V. D. Pis’mennyi, and A. T. Rakhimov, Sov. Phys.–Usp. 20, 586 (1977).

    Article  ADS  Google Scholar 

  22. P. V. Borodocheva, S. V. Golubev, V. G. Zorin, A. G. Eremeev, and V. E. Semenov, Sov. J. Plasma Phys. 15, 62 (1989).

    Google Scholar 

  23. N. A. Bogatov, S. V. Golubev, and S. V. Razin, Teplofiz. Vys. Temp. 30, 1041 (1992).

    Google Scholar 

  24. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 45, 965 (2019).

    Article  ADS  Google Scholar 

  25. S. I. Gritsinin, L. V. Kolik, I. A. Kossyi, A. Yu. Kostinskii, A. V. Sapozhnikov, N. M. Tarasova, and V. E. Terekhov, Tr. Inst. Obshch. Fiz. im. A.M. Prokhorova, Ross. Akad. Nauk 47, 108 (1994).

    Google Scholar 

  26. G. M. Batanov, N. K. Berezhetskaya, A. V. Kop’ev, I. A. Kossyi, and A. N. Magunov, High Temp. 46, 124 (2008).

    Article  Google Scholar 

  27. N. D. Borisov, A. V. Gurevich, and G. M. Milikh, Artificial Ionized Region in Atmosphere (IZMIRAN, Moscow, 1986) [in Russian].

    Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 17-12-01352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Konchekov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artem’ev, K.V., Batanov, G.M., Berezhetskaya, N.K. et al. Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures. Plasma Phys. Rep. 46, 927–935 (2020). https://doi.org/10.1134/S1063780X20090019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20090019

Keywords:

Navigation