Skip to main content
Log in

Simulation of the LSD Response to the Neutrino Burst from SN 1987A

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the Geant4 code, we have performed a full-scale simulation of the LSD response to the neutrino burst from SN 1987A. The neutrino flux parameters were chosen according to one of the models: the standard collapse model or the rotational supernova explosion model. We showed that, depending on the chosen parameters, one can either obtain the required number of pulses in the detector or reproduce their energy spectrum, but not both together. The interaction of neutrino radiation both with LSD itself and with the material of the surrounding rock was taken into account in our simulation. We also explored the hypothesis that the entire unique LSD signal at 2:52 UT was produced by neutrino fluxes from the surrounding granite. However, this hypothesis was not confirmed by our simulation. The results obtained provide a rich material for possible interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. IAU Cirk. No. 4316 (1987).

  2. M. Aglietta et al., Europhys. Lett. 3, 1315 (1987).

    Article  ADS  Google Scholar 

  3. E. N. Alekseev et al., JETP Lett. 45, 461 (1987).

    Google Scholar 

  4. R. M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  5. K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  6. Ya. B. Zel’dovich and O. Kh. Guseinov, Sov. Phys. Dokl. 10, 524 (1965).

    ADS  Google Scholar 

  7. W. D. Arnett, Can. J. Phys. 44, 2553 (1966).

    Article  ADS  Google Scholar 

  8. A. De Rujula, Phys. Lett. B 193, 514 (1987).

    Article  ADS  Google Scholar 

  9. V. S. Berezinsky, C. Castagnioli, V. I. Dokuchaev, and P. Galeotti, Nuovo Cim. C 11, 287 (1988).

    Article  ADS  Google Scholar 

  10. V. S. Imshennik, Space Sci. Rev. 74, 325 (1995).

    Article  ADS  Google Scholar 

  11. A. Drago and G. Pagliara, Eur. Phys. J. A 52, 41 (2016).

    Article  ADS  Google Scholar 

  12. V. S. Imshennik and O. G. Ryazhskaya, Astron. Lett. 30, 14 (2004).

    Article  ADS  Google Scholar 

  13. S. Yen, Oral Report, TRIUMF, Vancouver, Canada, Apr. 18, 2017.

  14. V. S. Imshennik and V. O. Molokanov, Astron. Lett. 35, 799 (2009).

    Article  ADS  Google Scholar 

  15. V. S. Imshennik and V. O. Molokanov, Astron. Lett. 36, 721 (2010).

    Article  ADS  Google Scholar 

  16. G. Badino et al., Nuovo Cim. C 7, 573 (1984).

    Article  ADS  Google Scholar 

  17. G. Battistoni et al., Phys. Lett. B 133, 454 (1983).

    Article  ADS  Google Scholar 

  18. A. Porta, PhD Thesis (Torino Univ., 2005), p. 159.

  19. V. L. Dadykin, G. T. Zatsepin, V. B. Korchagin, et al., JETP Lett. 45, 593 (1987).

    ADS  Google Scholar 

  20. M. Aglietta et al., in Vulcano 1988, Proceedings of the Conference on Frontier Objects in Astrophysics and Particle Physics (1989), Vol. 19, p. 103.

  21. IAU Circ. No. 4323 (1987).

  22. J. M. LoSecco, in Proceedings of the 2nd International Symposium UP-87, Baksan, USSR, 1987 (Nauka, Moscow, 1988), p. 100.

  23. J. M. Lo Seccco, Phys. Rev. D 39, 1013 (1989).

    Article  ADS  Google Scholar 

  24. A. Malgin, Nuovo Cim. C 21, 317 (1998).

    ADS  Google Scholar 

  25. N. Yu. Agafonova, A. S. Malgin, and W. Fulgione, J. Exp. Theor. Phys. 117, 258 (2013).

    Article  ADS  Google Scholar 

  26. V. N. Ivanchenko (for Geant4 Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 502, 666 (2003).

    Google Scholar 

  27. K. V. Manukovskii, O. G. Ryazhskaya, N. M. Sobolevsky, and A. V. Yudin, Phys. At. Nucl. 79, 631 (2016).

    Article  Google Scholar 

  28. K. V. Manukovskiy et al., in Proceedings of the 16th Lomonosov Conference (Mosk. Gos. Univ., Moscow, 2015), p. 72.

  29. A. Burrows and T. A. Thompson, in Stellar Collapse, Vol. 302 of Astrophysics and Space Science Library, Ed. by C. L. Fryer (Springer, Dordrecht, 2004).

  30. P. Vogel, Phys. Rev. D 29, 9 (1984).

    Article  Google Scholar 

  31. A. Strumia and F. Vissani, Phys. Lett. B 564, 42 (2003).

    Article  ADS  Google Scholar 

  32. T. Yoshida, T. Suzuki, S. Chiba, et al., Astrophys. J. 686, 448 (2008).

    Article  ADS  Google Scholar 

  33. H. Dapo and N. Paar, Phys. Rev. C 86, 035804 (2012).

  34. E. Kolbe, K. Langanke, and P. Vogel, Nucl. Phys. A 652, 91 (1999).

    Article  ADS  Google Scholar 

  35. T. Suzuki, J. Phys.: Conf. Ser. 321, 012041 (2011).

  36. M. Fukugita, Y. Kohayama, and K. Kubodera, Phys. Lett. B 212, 2 (1988).

    Article  Google Scholar 

  37. E. Kolbe, K. Langanke, and P. Vogel, Phys. Rev. D 66, 013007 (2002).

  38. T. Kuramoto, M. Fukugita, Y. Kohyama, and K. Kubodera, Nucl. Phys. A 512, 711 (1990).

    Article  ADS  Google Scholar 

  39. W. C. Haxton, Phys. Rev. D 36, 8 (1987).

    Article  Google Scholar 

  40. R. Lazauskas and C. Volpe, Nucl. Phys. A 792, 219 (2007).

    Article  ADS  Google Scholar 

  41. B. D. Anderson, A. Fazely, R. J. McCarthy, et al., Phys. Rev. C 27, 4 (1983).

    Article  Google Scholar 

  42. I. Stetcu and C. W. Johnson, Phys. Rev. C 69, 024311 (2004).

  43. Y. Fujita, H. Akimune, I. Daito, et al., Phys. Rev. C 59, 1 (1999).

    Article  Google Scholar 

  44. C. Luttge, P. Neumann-Cosel, et al., Phys. Rev. C 53, 127 (1996).

    Article  ADS  Google Scholar 

  45. B. D. Anderson, N. Tamimi, et al., Phys. Rev. C 43, 1 (1991).

    Google Scholar 

  46. I. Petermann, G. Martinez-Pinedo, K. Langanke, and E. Caurier, Eur. Phys. J. A 34, 319 (2007).

    Article  ADS  Google Scholar 

  47. K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 93, 202501 (2004).

  48. K. Muto and H. Horie, Nucl. Phys. A 440, 254 (1985).

    Article  ADS  Google Scholar 

  49. J. Nabi, R. Shehzadi, and M. Fayaz, Astrophys. Space Sci. 361, 95 (2016).

    Article  ADS  Google Scholar 

  50. N. Paar, D. Vretenar, and P. Ring, J. Phys. G: Nucl. Part. Phys. 35, 014058 (2008).

  51. J. Toivanen, E. Kolbe, K. Langanke, G. Martinez-Pinedo, and P. Vogel, Nucl. Phys. A 694, 395 (2001).

    Article  ADS  Google Scholar 

  52. A. Bandyopadhyay, P. Bhattacharjee, S. Chakraborty, K. Kar, and S. Saha, Phys. Rev. D 95, 065022 (2017).

  53. E. Caurier, K. Langanke, G. Martinez-Pinedo, and F. Nowacki, Nucl. Phys. A 653, 439 (1999).

    Article  ADS  Google Scholar 

  54. A. Juodagalvis, K. Langanke, G. Martinez-Pinedo, et al., Nucl. Phys. A 747, 87 (2005).

    Article  ADS  Google Scholar 

  55. E. Kolbe and K. Langanke, Phys. Rev. C 63, 025802 (2001).

  56. O. G. Ryazhskaya and S. V. Semenov, Phys. At. Nucl. 81, 262 (2018).

    Article  Google Scholar 

  57. V. L. Dadykin, G. T. Zatsepin, and O. G. Ryazhskaya, Sov. Phys. Usp. 32, 385 (1989).

    Article  Google Scholar 

  58. J. Migenda, PhD Thesis (Univ. of Sheffield, 2019); arXiv: 2002.01649.

  59. N. Agafonova, A. Malgin, and E. Fischbach, arXiv: 2107.00265 [nucl-ex].

  60. O. G. Ryazhskaya, Phys. Usp. 49, 1017 (2006).

    Article  ADS  Google Scholar 

  61. P. Galeotti and G. Pizzella, Eur. Phys. J. C 76, 426 (2016).

    Article  ADS  Google Scholar 

  62. M. Aglietta et al., Nuovo Cim. C 14, 171 (1991).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed in 2019 and was essentially finished in early 2020, before the death of our coauthors A.S. Malgin and O.G. Ryazhskaya. We think their contribution to this study to be decisive and devote the paper to their memory with gratitude. We thank V.S. Imshennik and D.K. Nadyozhin, who has also passed away, for the useful discussions and sincere interest in this study. We are grateful to the referee whose remarks contributed significantly to an improvement of the text of our paper.

Funding

The work of A.V. Yudin was supported by the Russian Science Foundation (project no. 21-12-00061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Manukovskiy, A. V. Yudin or N. Yu. Agafonova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manukovskiy, K.V., Yudin, A.V., Agafonova, N.Y. et al. Simulation of the LSD Response to the Neutrino Burst from SN 1987A. J. Exp. Theor. Phys. 134, 277–289 (2022). https://doi.org/10.1134/S1063776122030165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030165

Navigation