Skip to main content
Log in

Two Scenarios for the Eruption of Magnetic Flux Ropes in the Solar Atmosphere

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Eruptions of material from lower to upper layers of the solar atmosphere can be divided into two classes. The first class of eruptions maintain their (usually loop-like) shapes as they increase in size (eruptive prominences), or display a sudden expansion of fairly shapeless clumps of plasma in all directions (flare sprays). The second class refers to narrow, collimated flows of plasma on various scales (spicules, surges, jets). It is obvious that the magnetic configurations in which these phenomena develop differ: for the first class they form closed structures that confine the plasma, and in the second class open structures directing flows of plasma in a particular direction, as a rule, upward. At the same time, the mechanisms initiating eruptions of both classes could be similar, or even practically identical. This mechanism could be instability of twisted magnetic tubes (flux ropes), leading to different consequences under different conditions. It is shown that the results of eruptive instability are determined by the ratio of the scales of the magnetic flux rope and the confining coronal field, and also by the configuration of the ambient magnetic field in the corona. Observations of both types of eruptions are analyzed, the conditions for their develoment are examined, and phenomenological models are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Gosling, D. J. McComas, J. L. Phillips, and S. J. Bame, J. Geophys. Res. 96, 7831 (1991).

    Article  ADS  Google Scholar 

  2. J. T. Gosling, J. Geophys. Res. 98, 18937 (1993).

    Article  ADS  Google Scholar 

  3. N. Gopalswamy, in Solar and Stellar Variability: Impact on Earth and Planets, Ed. by A. G. Kosovichev, A. H. Andrei, and J.-P. Rozelot, Proc. IAU Symp. 264, 326 (2010).

    ADS  Google Scholar 

  4. N. Gopalswamy, M. Shimojo, W. Lu, S. Yashiro, K. Shibasaki, and R. A. Howard, Astrophys. J. 586, 562 (2003).

    Article  ADS  Google Scholar 

  5. X. L. Yan, Z. K. Xue, J. H. Liu, L. Ma, D. F. Kong, Z. Q. Qu, and Z. Li, Astrophys. J. 782, 67 (2014).

    Article  ADS  Google Scholar 

  6. S. Koutchmy and G. Stellmacher, Solar Phys. 49, 253 (1976).

    Article  ADS  Google Scholar 

  7. B. Rompolt and Z. Svestka, Adv. Space Res. 17 (4/5), 115 (1996).

    Article  ADS  Google Scholar 

  8. A. C. Sterling, Solar Phys. 196, 79 (2000).

    Article  ADS  Google Scholar 

  9. Y. Yamauchi, H. Wang, Y. Jiang, N. Schwandron, and R. L. Moore, Astrophys. J. 629, 572 (2005).

    Article  ADS  Google Scholar 

  10. Y. Liu, Solar Phys. 249, 75 (2008).

    Article  ADS  Google Scholar 

  11. K. Shibata, S. Nozawa, and R. Matsumoto, Publ. Astron. Soc. Jpn. 44, 265 (1992).

    ADS  Google Scholar 

  12. M. Shimojo, S. Hashimoto, K. Shibata, T. Hirayama, H. S. Hudson, and L. Acton, Publ. Astron. Soc. Jpn. 48, 123 (1996).

    Article  ADS  Google Scholar 

  13. J. Cirtain, L. Golub, A. van Ballegooijen, A. Savcheva, et al., Science (Washington, DC, U. S.) 318 (5856), 1580 (2007).

    Article  ADS  Google Scholar 

  14. B. Filippov, L. Golub, and S. Koutchmy, Solar Phys. 254, 259 (2009).

    Article  ADS  Google Scholar 

  15. A. R. Paraschiv, D. A. Lacatus, T. Badescu, M. G. Lupu, S. Simon, S. G. Sandu, M. Mierla, and M. V. Rusu, Solar Phys. 264, 365 (2010).

    Article  ADS  Google Scholar 

  16. R. L. Moore, J. W. Cirtain, A. C. Sterling, and D. A. Falconer, Astrophys. J. 720, 757 (2010).

    Article  ADS  Google Scholar 

  17. B. Filippov, A. K. Srivastava, B. N. Dwivedi, S. Masson, G. Aulanier, N. C. Joshi, and W. Uddin, Mon. Not. R. Astron. Soc. 451, 5636 (2015).

    Article  Google Scholar 

  18. J. W. Dungey, Mon. Not. R. Astron. Soc. 113, 180 (1953).

    Article  ADS  Google Scholar 

  19. R. Kippenhahn and A. Schlüter, Zeitschr. Astrophys. 43, 36 (1957).

    ADS  Google Scholar 

  20. S. K. Antiochos, R. B. Dahlburg, and J. A. Klimchuk, Astrophys. J. 420, L41 (1994).

    Article  ADS  Google Scholar 

  21. C. R. DeVore and S. K. Antiochos, Astrophys. J. 539, 954 (2000).

    Article  ADS  Google Scholar 

  22. G. Aulanier, C. R. de Vore, and S. K. Antiochos, Astrophys. J. 567, L97 (2002).

    Article  ADS  Google Scholar 

  23. M. Kuperus and M. A. Raadu, Astron. Astrophys. 31, 189 (1974).

    ADS  Google Scholar 

  24. W. Van Tend and M. Kuperus, Solar Phys. 59, 115 (1978).

    Article  ADS  Google Scholar 

  25. G.W. Pneuman, Solar Phys. 88, 219 (1983).

    Article  ADS  Google Scholar 

  26. A. A. van Ballegooijen and P. C. H. Martens, Astrophys. J. 343, 971 (1989).

    Article  ADS  Google Scholar 

  27. E. R. Priest, A.W. Hood, and U. Anzer, Astrophys. J. 344, 1010 (1989).

    Article  ADS  Google Scholar 

  28. D. M. Rust and A. Kumar, Solar Phys. 155, 69 (1994).

    Article  ADS  Google Scholar 

  29. G. Aulanier and P. Démoulin, Astron. Astrophys. 329, 1125 (1998).

    ADS  Google Scholar 

  30. J. Chae, H.Wang, J. Qiu, P. R. Goode, L. Strous, and H. S. Yun, Astrophys. J. 560, 476 (2001).

    Article  ADS  Google Scholar 

  31. S. E. Gibson and Y. Fan, J. Geophys. Res. 111, A12103 (2006).

    Article  ADS  Google Scholar 

  32. J. Chen, Phys. Plasmas 24, 090501 (2017).

    Article  ADS  Google Scholar 

  33. T. G. Forbes and P. A. Isenberg, Astrophys. J. 373, 294 (1991).

    Article  ADS  Google Scholar 

  34. B. Kliem and T. Török, Phys. Rev. Lett. 96 (25), 255002 (2006).

    Article  ADS  Google Scholar 

  35. P. Démoulin and G. Aulanier, Astrophys. J. 718, 1388 (2010).

    Article  ADS  Google Scholar 

  36. B. P. Filippov, O. V. Martsenyuk, O. E. Den, and Yu. V. Platov, Astron. Rep. 58, 928 (2014).

    Article  ADS  Google Scholar 

  37. B. P. Filippov and O. E. Den, J. Geophys. Res. 106, 25177 (2001).

    Article  ADS  Google Scholar 

  38. B. Filippov and A. Zagnetko, J. Atmos. Solar-Terr. Phys. 70, 614 (2008).

    Article  ADS  Google Scholar 

  39. T. Török and B. Kliem, Astrophys. J. 630, L97 (2005).

    Article  ADS  Google Scholar 

  40. U. Kushwaha, B. Joshi, A. M. Veronig, and Y.-J. Moon, Astrophys. J. 807, 101 (2015).

    Article  ADS  Google Scholar 

  41. E. R. Priest and T.G. Forbes, Astron. Astrophys. Rev. 10, 313 (2002).

    Article  ADS  Google Scholar 

  42. E. R. Priest and T. G. Forbes, Solar Phys. 126, 319 (1990).

    Article  ADS  Google Scholar 

  43. J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, et al., Solar Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  44. R. S. Steinolfson, E. J. Schmahl, and S. T. Wu, Solar Phys. 63, 187 (1979).

    Article  ADS  Google Scholar 

  45. Y. Suematsu, K. Shibata, T. Nishikawa, and R. Kitai, Solar Phys. 75, 99 (1982).

    Article  ADS  Google Scholar 

  46. K. Shibata, T. Nishikawa, R. Kitai, and Y. Suematsu, Solar Phys. 77, 121 (1982).

    Article  ADS  Google Scholar 

  47. Yu. V. Platov, B.V. Somov, and S. I. Syrovatskii, Solar Phys. 30, 139 (1973).

    Article  ADS  Google Scholar 

  48. B. P. Filippov, Astron. Rep. 37, 594 (1993).

    Google Scholar 

  49. A. S. Andreev, Astron. Rep. 38, 683 (1994).

    ADS  Google Scholar 

  50. K. Shibata and Y. Uchida, Solar Phys. 103, 299 (1986).

    Article  ADS  Google Scholar 

  51. K. Shibata, N. Nitta, K. T. Strong, R. Matsumoto, T. Yokoyama, T. Hirayama, H. Hudson, and Y. Ogawara, Astrophys. J. 431, L51 (1994).

    Article  ADS  Google Scholar 

  52. A. Okubo, R. Matsumoto, S. Miyaji, M. Akioka, K. Shibata, and T. Yokoyama, in Magnetic Reconnection in the Solar Atmosphere, Ed. by R.D. Bentley and J. T. Mariska, ASP Conf. Ser. 111, 39 (1996).

    ADS  Google Scholar 

  53. T. Yokoyama, in Solar Jets and Coronal Plumes, ESA SP-421, 215 (1998).

    Google Scholar 

  54. M. Shimojo, N. Narukage, R. Kano, T. S. Sakao, et al., Publ. Astron. Soc. Jpn. 59, S745 (2007).

    Article  ADS  Google Scholar 

  55. D. B. Ren, Y. C. Jiang, J. Y. Yang, R. S. Zheng, Y. Bi, and M. Wang, Astrophys.Space Sci. 318, 141 (2008).

    Article  ADS  Google Scholar 

  56. P. Kumar, P. K. Manoharan, and W. Uddin, Astrophys. J. 710, 1195 (2010).

    Article  ADS  Google Scholar 

  57. B. P. Filippov, Astron. Rep. 55, 541 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Filippov.

Additional information

Original Russian Text © B.P. Filippov, O.E. Den, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 5, pp. 379–386.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, B.P., Den, O.E. Two Scenarios for the Eruption of Magnetic Flux Ropes in the Solar Atmosphere. Astron. Rep. 62, 359–365 (2018). https://doi.org/10.1134/S1063772918050037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918050037

Navigation