Skip to main content
Log in

Application of the Wiener–Hopf method for describing the propagation of sound in cylindrical and rectangular channels with an impedance jump in the presence of a flow

  • Classical Problems of Linear Acoustics and Wave Theory
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Exact solutions to problems of the propagation of acoustic modes in lined channels with an impedance jump in the presence of a uniform flow are constructed. Two problems that can be solved by the Wiener- Hopf method—the propagation of acoustic modes in an infinite cylindrical channel with a transverse impedance jump and the propagation of acoustic modes in a rectangular channel with an impedance jump on one of its walls—are considered. On the channel walls, the Ingard–Myers boundary conditions are imposed and, as an additional boundary condition in the vicinity of the junction of the linings, the condition expressing the finiteness of the acoustic energy. Analytical expressions for the amplitudes of the transmitted and reflected fields are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Helmholts, Wissenschaftliche Abhandlungren 1 (1882).

  2. Lord Rayleigh (J. W. Strutt), The Theory of Sound (McMillan, London, 1896; GosTekhIzdat, 1944).

    Google Scholar 

  3. P. M. Morse, J. Acoust. Soc. Am., 11 (2), 205–210 (1939).

    Article  ADS  Google Scholar 

  4. L. A. Vainstein, The Theory of Diffraction and Factorization Method (Sov. Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  5. B. Noble, Methods Based on the Wiener-Hopf-Technique Method, (Pergamon, London, 1958; InLit, Moscow, 1962).

    MATH  Google Scholar 

  6. D. P. Blokhintsev, Acoustics of Nonuniform Moving Medium (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  7. U. Ingard, J. Acoust. Soc. Am. 31 (7), 1035–1036 (1959).

    Article  ADS  Google Scholar 

  8. M. K. Myers, J. Sound Vib. 71 (3), 429–434 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  9. D. C. Pridmore-Brown, J. Fluid Mech. 4 (4), 393–406 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Cremer, Acoustica 3 (2), 249–263 (1953).

    Google Scholar 

  11. B. J. Tester, J. Sound Vib. 27 (4), 477–513 (1973).

    Article  ADS  Google Scholar 

  12. B. J. Tester, J. Sound Vib. 28 (2), 151–203 (1973).

    Article  ADS  Google Scholar 

  13. E. J. Rice, J. Aircr. 16 (5), 336–343 (1979).

    Article  Google Scholar 

  14. E. A. Leontiev and A. F. Sobolev, in Aeroacoustica (Nauka, Moscow, 1980), pp. 33–46 [in Russian].

    Google Scholar 

  15. A. F. Sobolev and E. G. Maslova, Tehn. Vozdush. Flota, Nos. 1–3, 26–33 (1992).

    Google Scholar 

  16. A. S. Leontiev, E. G. Maslova, V. G. Smirnov, and A. F. Sobolev, Tekhn. Akustika 2 (2), 37–42 (1993).

    Google Scholar 

  17. A. F. Gladenko and E. A. Leontiev, Akust. Zh. 31 (2), 171–177 (1985).

    Google Scholar 

  18. A. F. Gladenko and E. A. Leontiev, Akust. Zh. 33 (2), 212–218 (1987).

    Google Scholar 

  19. A. F. Gladenko and E. A. Leontiev, Akust. Zh. 33 (6), 1008–1013 (1987).

    Google Scholar 

  20. A. F. Gladenko and E. A. Leontiev, Akust. Zh. 34 (5), 820–827 (1988).

    ADS  Google Scholar 

  21. A. F. Sobolev, Akust. Zh. 40 (5), 837–843 (1994).

    Google Scholar 

  22. A. F. Sobolev, Trudy TsAGI “Aviats. Akust.”, no. 2681, 69–81 (2009).

    Google Scholar 

  23. A. F. Sobolev, Trudy TsAGI, no. 2355, 75–82 (1988).

    Google Scholar 

  24. A. F. Gladenko and A. F. Sobolev, Akust. Zh. 39 (6), 1037–1042 (1993).

    Google Scholar 

  25. A. F. Sobolev, Akust. Zh. 41 (2), 301–306 (1995).

    Google Scholar 

  26. D. L. Lansing and W. E. Zorumski, J. Sound Vib. 27 (1), 85–100 (1973).

    Article  ADS  Google Scholar 

  27. J. F. Unruh, J. Sound Vib. 45 (1), 5–14 (1976).

    Article  ADS  Google Scholar 

  28. M. S. Tsai, J. Sound Vib. 83 (4), 501–512 (1982).

    Article  ADS  Google Scholar 

  29. W. Koch and W. Mohring, AIAA J. 21 (2), 200–213 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  30. S. W. Rienstra and N. Peake, in Proc. 11th AIAA/CEAS Aeroacoust. Conf., (Monterey, California, 2005), Paper no. 2005–2852.

    Google Scholar 

  31. A. McAlpine, R. J. Astley, V. J. T. Hii, N. J. Baker, and A. J. Kempton, J. Sound Vib. 294 (4–5), 780–806 (2006).

    Article  ADS  Google Scholar 

  32. S. W. Rienstra, J. Eng. Math. 59 (4), 451–475 (2007).

    Article  Google Scholar 

  33. E. J. Brambley, J. Eng. Math. 65 (4), 345–354 (2009).

    Article  MathSciNet  Google Scholar 

  34. G. Gabard, in Proc. 16th AIAA/CEAS Aeroacoust. Conf., (Stockholm, 2010), Paper no. 2010–3940.

    Google Scholar 

  35. X. Liu, H. Jiang, X. Huang, and S. Chen, J. Fluid Mech. 786 (1), 62–83 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, (McMillan, New York, 1971;. Mir, Moscow, 1974).

    MATH  Google Scholar 

  37. N. N. Ostrikov and S. L. Denisov, in Proc. 22nd AIAA/CEAS Aeroacoustics Conference. (Lion, France, 2016), Paper no. 2016–3014.

    Google Scholar 

  38. S. W. Rienstra, Wave Motion 37 (2), 119–135 (2003).

    Article  MathSciNet  Google Scholar 

  39. A. F. Sobolev, Acoust. Phys. 58 (4), 490–502 (2012).

    Article  ADS  Google Scholar 

  40. M. Nair, Y. Detandt, B. Yannic, D. Binet, T. Cordaro, B. de Brye, and A. Mosson, in Proc. 22nd AIAA/CEAS Aeroacoustics Conf. (Lion, France, 2016), Paper no. 2016–2786.

    Google Scholar 

  41. A. G. Munin, V. M. Kuznetsov, and E. A. Leontyev, Aerodynamical Sourses of Noise (Mashinostroenie, Moscow, 1981) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yakovets.

Additional information

Original Russian Text © A.F. Sobolev, M.A. Yakovets, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 6, pp. 583–595.

This paper is based on an oral presentation at the Fourth International Workshop and Sixth All-Russia Conference “Computational Experiment in AeroAcoustics,” September 19–24, 2016, Svetlogorsk, Kaliningrad region; http://ceaa-w.imamod.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A.F., Yakovets, M.A. Application of the Wiener–Hopf method for describing the propagation of sound in cylindrical and rectangular channels with an impedance jump in the presence of a flow. Acoust. Phys. 63, 625–636 (2017). https://doi.org/10.1134/S1063771017060148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017060148

Keywords

Navigation