Skip to main content
Log in

Phenomenological formula for thermal conductivity coefficient of water-based nanofluids

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A phenomenological formula has been proposed to describe the thermal conductivity of waterbased nanofluids. The formula has been derived based on available experimental data on nanofluids containing Al2O3 particles. It takes into account the dependence of the thermal conductivity coefficients of the nanofluids on both volume concentration and sizes of the particles. The formula has also been shown to describe with an accuracy of about 3% the thermal conductivity coefficients of nanofluids containing TiO2, SiO2, ZrO2, and CuO particles with sizes of 8–150 nm and volume concentrations as high as 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N., Netsu Bussei, 1993, vol. 7, p. 227.

    Article  CAS  Google Scholar 

  2. Wang, X., Xu, X., and Choi, S.U.S., J. Thermophys. Heat Transfer, 1999, vol. 13, p. 474.

    Article  CAS  Google Scholar 

  3. Wong, K.V. and De Leon, O., Adv. Mech. Eng., 2010, vol. 2.

  4. Rudyak, V.Ya., Belkin, A.A., Tomilina, E.A., and Egorov, V.V., in Defect and Diffusion Forum: Diffusion in Solids and Liquids III. Vols. 273–276, Öchsner, A. and Murch, G.E., Eds., Pfaffikon: Trans. Tech., 2008, p. 566.

  5. Timofeeva, E.V., Smith, D.S., Yu, W., France, D.M., Singh, D., and Routbo, J.L., Nanotechnology, 2010, vol. 21, p. 215703.

    Article  Google Scholar 

  6. Hosseini, S.Sh., Shahrjerdi, A., and Vazifeshenas, Y., Aust. J. Basic Appl. Sci., 2011, vol. 5, no. 10, p. 417.

    Google Scholar 

  7. Kleinstreuer, K. and Yu, F., Nanoscale Res. Lett., 2011, vol. 6, p. 229.

    Article  Google Scholar 

  8. Rudyak, V.Ya. and Belkin, A.A., Nanosist.: Fiz., Khim., Mat., 2010, vol. 1, p. 156.

    Google Scholar 

  9. Li, C.H. and Peterson, G.P., J. Appl. Phys., 2006, vol. 99, p. 084314.

    Article  Google Scholar 

  10. Zhu, H.T., Zhang, C.Y., Tang, Y.M., and Wang, J.X., J. Phys. Chem. C, 2007, vol. 111, p. 1646.

    Article  CAS  Google Scholar 

  11. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford Clarendon, 1881.

    Google Scholar 

  12. Hamilton, R.L. and Crosser, O.K., Ind. Eng. Chem. Fundam., 1962, vol. 1, p. 187.

    Article  CAS  Google Scholar 

  13. Maíga, S.E.B., Nguen, C.T., Galanis, N., and Roy, G., Superlattices Microstruct., 2004, vol. 35, p. 543.

    Article  Google Scholar 

  14. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., J. Heat Transfer, 1999, vol. 121, p. 280.

    Article  CAS  Google Scholar 

  15. Garg, J., Poudel, B., Chiesa, M., Gordon, J.B., Ma, J.J., Wang, J.B., Ren, Z.F., Kang, Y.T., Ohtani, H., Nanda, J., McKinley, G.H., and Chen, G., J. Appl. Phys., 2008, vol. 103, p. 074301.

    Article  Google Scholar 

  16. Buorgiorno, J., J. Heat Transfer, 2006, vol. 128, p. 240.

    Article  Google Scholar 

  17. Yu, W. and Choi, S., J. Nanopart. Res., 2003, vol. 5, p. 167.

    Article  CAS  Google Scholar 

  18. Rudyak, V.Ya., Belkin, A.A., and Tomilina, E.A., Pis’ma Zh. Tekh. Fiz., 2008, vol. 34, no. 2, p. 69.

    Google Scholar 

  19. Rudyak, V.Ya., Adv. Nanopart., 2013, vol. 2, p. 266.

    Article  Google Scholar 

  20. Kumar, P.M., Kumar, J., Tamilarasan, R., Sendhilnathan, S., and Suresh, S., Eng. J., 2015, vol. 19, no. 1, p. 67.

    Article  CAS  Google Scholar 

  21. Rashmi, W., Khalid, M., Ong, S.S., and Saidur, R., Mater. Res. Express, 2014, vol. 1, p. 032001.

    Article  Google Scholar 

  22. Chon, C.H., Kihm, K.D., Lee, S.P., and Choi, S.U.S., Appl. Phys. Lett., 2005, vol. 87, p. 153107.

    Article  Google Scholar 

  23. Das, S.K., Putra, P., Thiesen, A., and Roetzel, W., J. Heat Transfer, 2003, vol. 125, p. 567.

    Article  CAS  Google Scholar 

  24. Timofeeva, E.V., Gavrilov, A.N., McCloskey, J.M., Tolmachev, Y.V., Sprunt, S., Lopatina, L.M., and Selinger, J.V., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2007, vol. 76, p. 061203.

    Article  Google Scholar 

  25. Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S., J. Nanopart. Res., 2009, vol. 11, p. 1129.

    Article  CAS  Google Scholar 

  26. Tavman, I. and Turgut, A., in Microfluidics Based Microsystems, Kakac, S., Kosoy, B., Li, D., and Pramuanjaroenkij, A., Eds., Dordrecht: Springer, 2010, p. 139.

  27. Pryazhnikov, M.I., Minakov, A.V., and Rudyak, V.Ya., Abstracts of Papers, 5 Vseross. konf. “Fundamental’nye osnovy MEMSi nanotekhnologii” (5 All-Russia Conf. “Fundamentals of MEMSand Nanotechnology”), Novosibirsk: NGSAU, 2015, vol. 2, p. 85.

    Google Scholar 

  28. Fizicheskie velichiny. Spravochnik (Physical Quantities: A Handbook), Grigor’ev, I.S. and Melikhov, E.Z., Eds., Moscow Energoatomizdat, 1991.

  29. Rudyak, V.Ya., Dimov, S.V., and Kuznetsov, V.V., Pis’ma Zh. Tekhn. Fiz., 2013, vol. 39, no. 17, p. 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © D. Ceotto, V.Ya. Rudyak, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 4, pp. 484–489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceotto, D., Rudyak, V.Y. Phenomenological formula for thermal conductivity coefficient of water-based nanofluids. Colloid J 78, 509–514 (2016). https://doi.org/10.1134/S1061933X16040153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16040153

Navigation