Skip to main content
Log in

Electromagnetic field generated by a modulated moving point source in a planarly layered waveguide

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present work, we consider a modulated point source in an arbitrary motion in an isotropic planarly layered waveguide. The radiation field generated by this source is represented in the form of double oscillatory integrals in terms of the time and the frequency, depending on the large parameter λ. By means of the stationary phase method, we analyze, in the waveguide, the Doppler effect, the retarded time, and the Vavilov–Cherenkov radiation. Numerically, the problem of the moving source is approached by the method of spectral parameter power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Afanasiev, Vavilov-Cherenkov and Synchrotron Radiation. Foundations and Applications (Fundamental Theories of Physics, Vol. 142, Kluwer Academic Publishers, New York, 2005).

    MATH  Google Scholar 

  2. V. Barrera-Figueroa, V. V. Kravchenko, and V. S. Rabinovich, “Spectral Parameter Power Series Analysis of Isotropic Planarly Layered Waveguides,” Appl. Anal. 93 (4), 729–755 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Barrera-Figueroa and V. S. Rabinovich, “Asymptotics of the Far Field Generated by a Modulated Point Source in a Planarly Layered Electromagnetic Waveguide,” Math. Methods Appl. Sci. (2014); DOI: 10.1002/mma.3176.

    Google Scholar 

  4. E. S. Belonogaya, S. N. Galyamin, and A. V. Tyukhtin, “Properties of Vavilov–Cherenkov Radiation in an Anisotropic Medium with a Resonant Dispersion of Permittivity,” J. Opt. Soc. Amer. B Opt. Phys. 28 (12), 2871–2878 (2011).

    Article  ADS  Google Scholar 

  5. B. M. Bolotovskii, “Vavilov–Cherenkov Radiation: Its Discovery and Application,” Phys.-Usp. 52 (11), 1099–1110 (2009).

    Article  ADS  Google Scholar 

  6. L. M. Brekhovskikh, Waves in Layered Media (Applied Mathematics and Mechanics, Vol. 6, Academic Press, New York, 1960).

    MATH  Google Scholar 

  7. L. Brillouin, Wave Propagation and Group Velocity (Pure and Applied Physics, Vol. 8, Academic Press, New York, 1960).

    MATH  Google Scholar 

  8. G. Burlak and V. S. Rabinovich, “Time-Frequency Integrals and the Stationary Phase Method in Problems of Waves Propagation from Moving Sources,” Symmetry, Integrability, and Geometry: Methods and Applications 8, 096, (2012).

    MathSciNet  MATH  Google Scholar 

  9. G. Burlak, V. S. Rabinovich, and J. R. Hernandez-Juarez, “Time-Frequency Integrals and the Stationary Phase Method in Problems of Acoustic Waves Propagation from Moving Sources,” Commun. Math. Anal. 14 (2), 25–39 (2013).

    MathSciNet  MATH  Google Scholar 

  10. G. Burlak and V. S. Rabinovich, “Propagation of Electromagnetic Waves Generated by Modulated Moving Source in Dispersive Lossy Media,” Math. Methods Appl. Sci. (2014); DOI: 10.1002/mma.3191.

    Google Scholar 

  11. A. J. Carpenter, R. S. Varga, and J. Waldvogel, “Asymptotics for the Zeros of the Partial Sums of e z. I,” Rocky Mountain J. Math. 21 (1), 99–120 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Castillo-Pérez, V. V. Kravchenko, and S. M. Torba, “Spectral Parameter Power Series for Perturbed Bessel Equations,” Appl. Math. Comput. 220, 676–694 (2013).

    MathSciNet  MATH  Google Scholar 

  13. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Series on Electromagnetic Waves, IEEE Press, New York, 1995).

    Google Scholar 

  14. S. Christiansen and P. A. Madsen, “On Truncated Taylor Series and the Position of Their Spurious Zeros,” Appl. Numer. Math. 56 (1), 91–104 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Cohen, Time-Frequency Analysis (Prentice-Hall PTR, New Jersey, 1995).

    Google Scholar 

  16. T. J.-L. Courvoisier, High Energy Astrophysics. An Introduction (Astronomy and Astrophysics Library, Springer, Heidelberg, 2013).

    Book  MATH  Google Scholar 

  17. L. M. Delves and J. N. Lyness, “A Numerical Method for Locating the Zeros of an Analytic Function,” Math. Comp. 21, 543–560 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Duan, B.-I. Wu, S. Xi, H. Chen, and M. Chen, “Research Progress in Reversed Cherenkov Radiation in Double-Negative Metamaterials,” Progr. Electromagnetics Research 90, 75–87 (2009).

    Article  Google Scholar 

  19. E. Dwek and F. Krennrich, “The Extragalactic Background Light and the Gamma-Ray Opacity of the Universe,” Astropart. Phys. 43, 112–133 (2013).

    Article  ADS  Google Scholar 

  20. A. Edrei, E. B. Saff, and R. S. Varga, Zeros of Sections of Power Series (Lecture Notes in Mathematics, Vol. 1002, Springer, Berlin, 1983).

    MATH  Google Scholar 

  21. M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow, 1977) [In Russian].

    MATH  Google Scholar 

  22. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE Series on Electromagnetic Waves, IEEE Press and Wiley-Interscience, New York, 1994).

    Book  MATH  Google Scholar 

  23. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics. Mainly Mechanics, Radiation, and Heat (Vol. I, Addison-Wesley, Reading MA., 1963).

    MATH  Google Scholar 

  24. S. N. Galyamin and A. V. Tyukhtin, “Electromagnetic Field of a Moving Charge in the Presence of a Left-Handed Medium,” Phys. Rev. B 81 (23), 235134 (2010).

    Article  ADS  Google Scholar 

  25. D. J. Griffiths, Introduction to Electrodynamics (Third Edition, Prentice Hall, New Jersey, 1999).

    Google Scholar 

  26. S. M. Grudskii, O. A. Obresanova, and V. S. Rabinovich, “Propagation of Sound from a Moving Air-Borne Source in the Ice-Covered Ocean,” Akustichesk. Zh. 42 (2), 191–196 (1996) [in Russian].

    Google Scholar 

  27. V. I. Il’ichev, V. S. Rabinovich, E. A. Rivelis, and U. V. Khokha, “On the Acoustic Field of a Moving Narrow-Band Source in Oceanic Waveguides,” Dokl. Akad. Nauk SSSR 304 (5), 1123–1127 (1989).

    MathSciNet  Google Scholar 

  28. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1962).

    MATH  Google Scholar 

  29. O. D. Jefimenko, Electricity and Magnetism. An Introduction to the Theory of Electric and Magnetic Fields (Second Edition, Electret Scientific Company, Star City, 1989).

    Google Scholar 

  30. K. V. Khmelnytskaya, V. V. Kravchenko, and J. A. Baldenebro-Obeso, “Spectral Parameter Power Series for Fourth-Order Sturm-Liouville Problems,” Appl. Math. Comp. 219 (8), 3610–3624 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. V. Kravchenko and M. R. Porter, “Spectral Parameter Power Series for Sturm-Liouville Problems,” Math. Methods Appl. Sci. 33 (4), 459–468 (2010).

    MathSciNet  MATH  Google Scholar 

  32. V. V. Kravchenko, S. M. Torba, and U. Velasco-Garcia, “Spectral Parameter Power Series for Polynomial Pencils of Sturm-Liouville Operators and Zakharov-Shabat Systems,” Preprint (2014) (Available from: http://arxiv.org/abs/1401.1520).

    Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Course of Theoretical Physics, Vol. 8, Second Edition, Pergamon Press, Oxford, 1984).

    MATH  Google Scholar 

  34. D. H. Lehmer, “A Machine Method for Solving Polynomial Equations,” J. ACM 8 (2), 151–162 (1961).

    Article  MATH  Google Scholar 

  35. D. Loewenthal, “Improvements on the Lehmer-Schur Root Detection Method,” J. Comp. Phys. 109 (2), 164–168 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, Jr., B.-I. Wu, J. A. Kong, and M. Chen, “Cerenkov Radiation in Materials with Negative Permittivity and Permeability,” Opt. Express 11 (7), 723–734 (2003).

    Article  ADS  Google Scholar 

  37. E. Martinez-Sanchez, G. Burlak, and V. S. Rabinovich, “The Structure of the Cherenkov Field Emission in Metamaterials,” Commun. Math. Anal. 17 (2), 253–262 (2014).

    MathSciNet  MATH  Google Scholar 

  38. O. A. Obresanova and V. S. Rabinovich, “Acoustic Field of a Source Moving along StratifiedWaveguide Surface,” Akustichesk. Zh. 39 (3), 517–521 (1993) [in Russian].

    Google Scholar 

  39. O. A. Obresanova and V. S. Rabinovich, “Acoustic Field Generated by Moving Sources in Stratified Waveguides,” Wave Motion 27 (2), 155–167 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Y. Pan, “Solving a Polynomial Equation: Some History and Recent Progress,” SIAM Rev. 39 (2), 187–220 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Second Edition, Addison-Wesley, Reading MA., 1962).

    MATH  Google Scholar 

  42. V. S. Rabinovich and I. Miranda-Sanchez, “Radiation from Nonuniformly Moving Sources in the Plasma,” Proceedings of the International Seminar -Days on Diffraction 2004, Saint Petersburg, Russia, 163–174 (2004).

    Google Scholar 

  43. G. Szegö, “Über eine Eigenschaft der Exponentialreihe,” Sitzungsberichte der Berliner Math. Gesellschaft 21, 50–64 (1922) (Also in Collected Papers, Vol. 1, Birkhäuser, Boston, 645–662 (1982)).

    MATH  Google Scholar 

  44. A. V. Tyukhtin, “Energy Characteristics of Radiation from an Oscillating Dipole Moving in a Dielectric Medium with Resonant Dispersion,” Tech. Phys. 50 (8), 1084–1088 (2005).

    Article  Google Scholar 

  45. A. V. Tyukhtin and S. N. Galyamin, “Vavilov–Cherenkov Radiation in Passive and Active Media with Complex Resonant Dispersion,” Phys. Rev. E 77 (6), 066606 (2008).

    Article  ADS  Google Scholar 

  46. B. R. Vainberg, “On the ShortWave Asymptotic Behaviour of Solutions of Stationary Problems and the Asymptotic Behaviour as t→∞ of Solutions of Non-Stationary Problems,” Russian. Math. Surveys. 30 (2), 1–58 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics (Gordon & Breach Science Publishers, New York, 1989).

    MATH  Google Scholar 

  48. R. S. Varga and A. J. Carpenter, “Asymptotics for the Zeros of the Partial Sums of ez. II,” In: S. Ruscheweyh, E. B. Saff, L. C. Salinas, and R. S. Varga (eds.), Computational Methods and Function Theory (Lecture Notes in Math., Vol. 1435, Springer, Berlin, 1990, pp. 201–207).

    Chapter  Google Scholar 

  49. N. Ya. Vilenkin, Method of Successive Approximations (Mir Publishers, Little Mathematics Library, Moscow, 1979).

    MATH  Google Scholar 

  50. G. M. Volkoff, “Electric Field of a Charge Moving in a Medium,” Amer. J. Phys. 31 (8), 601–605 (1963).

    Article  ADS  Google Scholar 

  51. V. V. Vorobev and A. V. Tyukhtin, “Nondivergent Cherenkov Radiation in a Wire Metamaterial,” Phys. Rev. Lett. 108 (18), 184801 (2012).

    Article  ADS  Google Scholar 

  52. P. Walker, “The Zeros of the Partial Sums of the Exponential Series,” Amer. Math. Monthly 110 (4), 337–339 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Werner, K. D. de Vries, and O. Scholten, “A Realistic Treatment of Geomagnetic Cherenkov Radiation from Cosmic Ray Air Showers,” Astropart. Phys. 37, 5–16 (2012).

    Article  ADS  Google Scholar 

  54. J.-C. Yakoubsohn, “Approximating the Zeros of Analytic Functions by the Exclusion Algorithm,” Numer. Algorithms 6 (1), 63–88 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides (Springer, New York, 2008).

    Book  Google Scholar 

  56. X. Ying and I. N. Katz, “A Reliable Argument Principle Algorithm to Find the Number of Zeros of an Analytic Function in a Bounded Domain,” Numer. Math. 53 (1–2), 143–163 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  57. V. A. Zorich, Mathematical Analysis, II (Springer, Universitext, Berlin, 2004).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Barrera-Figueroa or V. S. Rabinovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera-Figueroa, V., Rabinovich, V.S. Electromagnetic field generated by a modulated moving point source in a planarly layered waveguide. Russ. J. Math. Phys. 23, 139–163 (2016). https://doi.org/10.1134/S1061920816020011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920816020011

Navigation