Skip to main content
Log in

Genotoxic and Carcinogenic Effects of Industrial Factors in Coal Mining and Coal-Processing Industry (Review)

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This paper presents a review of research devoted to the study of genotoxic and carcinogenic effects of exposure to factors of the production environment of the coal mining and coal processing industries. The first part of the review analyzes mutagenic effects: chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei (MN), and DNA comets in coal mining workers (mines) and workers in coal processing (coal heating plants, coking plants) enterprises. The second part is devoted to the study of cancer incidence in workers employed in the coal industry. The third part deals with works that carried out a comprehensive analysis of the mutagenic and carcinogenic effects in miners and workers at coal-fired power plants and coking plants. In general, the analysis of the literature confirmed the high genotoxic and carcinogenic danger of the working conditions for workers employed in the coal mining and coal processing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zanetti, M.C. and Fiore, S., Foundry waste recycling in moulding operations and in the ceramic industry, Waste Manag. Res., 2003, vol. 21, no. 3, pp. 235—242. https://doi.org/10.1177/0734242X0302100307

    Article  CAS  PubMed  Google Scholar 

  2. Jayasekher, T., Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation, Chemosphere, 2009, vol. 75, no. 11, pp. 1525—1530. https://doi.org/10.1016/j.chemosphere.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Sinha, S.N. and Nag, P.K., Air pollution from solid fuels, in Encyclopedia of Environmental Health, 2011, pp. 46—52.

  4. Jumpponen, M., Rönkkömäki, H., Pasanen, P., and Laitinen, J., Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants, Chemosphere, 2013, vol. 90, no. 3, pp. 1289—1293. https://doi.org/10.1016/j.chemosphere.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  5. Ulker, O.C., Ustundag, A., Duydu, Y., et al., Cytogenetic monitoring of coal workers and patients with coal workers' pneumoconiosis in Turkey, Environ. Mol. Mutagen., 2008, vol. 49, no. 3, pp. 232—237. https://doi.org/10.1002/em.20377

    Article  CAS  PubMed  Google Scholar 

  6. Graber, J.M., Stayner, L.T., Cohen, R.A., et al., Respiratory disease mortality among US coal miners; results after 37 years of follow-up, Occup. Environ. Med., 2014, vol. 71, no. 1, pp. 30—39. https://doi.org/10.1136/oemed-2013-101597

    Article  PubMed  Google Scholar 

  7. Druzhinin, V.G., Minina, V.I., and Mokrushina, N.V., Genotoxic effects among coke-oven workers, Med. Truda Prom. Ekol., 2000, no. 10, pp. 22—24.

  8. Panaiotti, E.A. and Surzhikov, D.V., Comprehensive assessment of working conditions and health risks of workers in the main shops of thermal power plants, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 2007, no. 1(123), pp. 56—62.

  9. Garcia-Perez, J., Pollan, M., Boldo, E., et al., Mortality due to lung, laryngeal and bladder cancer in towns lying in the vicinity of combustion installations, Sci. Total Environ., 2009, vol. 407, no. 8, pp. 2593—2602. https://doi.org/10.1016/j.scitotenv.2008.12.062

    Article  CAS  PubMed  Google Scholar 

  10. Panaiotti, E.A., Danilov, I.P., and Surzhikov, D.V., Estimation of morbidity risk resulting from exposure to whole-body vibration among the employees of the turbine workshops at thermal power plants, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 2012, no. 5, no. 87, pp. 90—93.

  11. Miller, B.G., Doust, E., Cherrie, J.W., and Hurley, J.F., Lung cancer mortality and exposure to polycyclic aromatic hydrocarbons in British coke oven workers, BMC Public Health, 2013, vol. 13, p. 962. https://doi.org/10.1186/1471-2458-13-962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zakharenkov, V.V. and Kislitsyna, V.V., Occupational health risk assessment among workers of coal power plant, Mezhdunar. Zh. Prikl. Fundam. Issled., 2014, no. 1, pp. 168—170.

  13. Collarile, P., Bidoli, E., Barbone, F., et al., Residence in proximity of a coal-oil-fired thermal power plant and risk of lung and bladder cancer in North-Eastern Italy: a population-based study: 1995—2009, Int. J. Environ. Res. Publ. Health, 2017, vol. 14, no. 8, p. 860. https://doi.org/10.3390/ijerph14080860

    Article  CAS  Google Scholar 

  14. Smerhovsky, Z., Landa, K., Rössner, P., et al., Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations, Mutat. Res., 2002, vol. 514, no. 1—2, pp. 165—176.

    Article  CAS  Google Scholar 

  15. Armutcu, F., Gun, B.D., Altin, R., and Gurel, A., Examination of lung toxicity, oxidant/antioxidant status and effect of erdosteine in rats kept in coal mine ambience, Environ. Toxicol. Pharmacol., 2007, vol. 24, no. 2, pp. 106—113. https://doi.org/10.1016/j.etap.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  16. Valko, M., Jomova, K., Rhodes, C.J., et al., Redox- and non-redox-metal-induced formation of free radicals and their role in human disease, Arch. Toxicol., 2016, vol. 90, no. 1, pp. 1—37. https://doi.org/10.1007/s00204-015-1579-5

    Article  CAS  PubMed  Google Scholar 

  17. Leon-Mejia, G., Silva, L.F., Civeira, M.S., et al., Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells, Environ. Sci. Pollut. Res. Int., 2016, vol. 23, no. 23, pp. 24019—24031. https://doi.org/10.1007/s11356-016-7623-z

    Article  CAS  PubMed  Google Scholar 

  18. Donbak, L., Rencuzogullari, E., Yavuz, A., and Topaktas, M., The genotoxic risk of underground coal miners from Turkey, Mutat. Res., 2005, vol. 588, no. 2, pp. 82—87. https://doi.org/10.1016/j.mrgentox.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  19. Wang, F., He, Y., Guo, H., et al., Genetic variants of nucleotide excision repair genes are associated with DNA damage in coke oven workers, Cancer Epidemiol. Biomarkers Prev., 2010, vol. 19, no. 1, pp. 211—218. https://doi.org/10.1158/1055-9965.EPI-09-0270

    Article  CAS  PubMed  Google Scholar 

  20. Leon-Mejia, G., Espitia-Perez, L., Hoyos-Giraldo, L.S., et al., Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay, Sci. Total Environ., 2011, vol. 409, no. 4, pp. 686—691. https://doi.org/10.1016/j.scitotenv.2010.10.049

    Article  CAS  PubMed  Google Scholar 

  21. Volobaev, V.P., Sinitsky, M.Y., Larionov, A.V., et al., Modifying influence of occupational inflammatory diseases on the level of chromosome aberrations in coal miners, Mutagenesis, 2016, vol. 31, no. 2, pp. 225—229. https://doi.org/10.1093/mutage/gev080

    Article  CAS  PubMed  Google Scholar 

  22. Santa Maria, S.R., Arana, M., and Ramirez, O., Chromosomal aberrations in peripheral lymphocytes from male native miners working in the Peruvian Andes, Genet. Mol. Biol., 2007, vol. 30, no. 4, pp. 1135—1138. https://doi.org/10.1590/S1415-47572007000600017

    Article  Google Scholar 

  23. Rohr, P., Silva, J., Silva, F.R., et al., Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus cytome assay, Environ. Mol. Mutagen., 2013, vol. 54, no. 1, pp. 65—71. https://doi.org/10.1002/em.21744

    Article  CAS  PubMed  Google Scholar 

  24. Rohr, P., Kvitko, K., Silva, F.R., et al., Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal, Mutat. Res., 2013, vol. 758, no. 1—2, pp. 23—28. https://doi.org/10.1016/j.mrgentox.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  25. Leon-Mejia, G., Quintana, M., Debastiani, R., et al., Genetic damage in coal miners evaluated by buccal micronucleus cytome assay, Ecotoxicol. Environ. Saf., 2014, vol. 107, pp. 133—139. https://doi.org/10.1016/j.ecoenv.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  26. da Silva Júnior, F., Tavella, R.A., Fernandes, C., et al., Genotoxicity in Brazilian coal miners and its associated factors, Hum. Exp. Toxicol., 2018, vol. 37, no. 9, pp. 891—900. https://doi.org/10.1177/0960327117745692

    Article  CAS  PubMed  Google Scholar 

  27. Minina, V.I., Kulemin, Yu.E., Tolochko, T.A., et al., Genotoxic effects of occupational environment in Kuzbass miners, Med. Truda Prom. Ekol., 2015, no. 5, pp. 4—8.

  28. Volobaev, V.P., Larionov, A.V., Kalyuzhnaya, E.E., et al., Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects, Mutagenesis, 2018, vol. 33, no. 2, pp. 129—135. https://doi.org/10.1093/mutage/gex047

    Article  CAS  PubMed  Google Scholar 

  29. Sinitsky, M.Y., Minina, V.I., Gafarov, N.I., et al., Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes, Mutagenesis, 2016, vol. 31, no. 6, pp. 669—675. https://doi.org/10.1093/mutage/gew038

    Article  CAS  PubMed  Google Scholar 

  30. Sinitsky, M.Y., Minina, V.I., Asanov, M.A., et al., Association of DNA repair gene polymorphisms with genotoxic stress in underground coal miners, Mutagenesis, 2017, vol. 32, no. 5, pp. 501—509. https://doi.org/10.1093/mutage/gex018

    Article  CAS  PubMed  Google Scholar 

  31. Pavanello, S., Kapka, L., Siwinska, E., et al., Micronuclei related to anti-B[a]PDE-DNA adduct in peripheral blood lymphocytes of heavily polycyclic aromatic hydrocarbon-exposed nonsmoking coke-oven workers and controls, Cancer Epidemiol. Biomarkers Prev., 2008, vol. 17, no. 10, pp. 2795—2799. https://doi.org/10.1158/1055-9965.EPI-08-0346

    Article  CAS  PubMed  Google Scholar 

  32. Pavanello, S., Bollati, V., Pesatori, A.C., et al., Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals, Int. J. Cancer, 2009, vol. 125, no. 7, pp. 1692—1697. https://doi.org/10.1002/ijc.24492

    Article  CAS  PubMed  Google Scholar 

  33. Leng, S., Dai, Y., Niu, Y., et al., Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers, Cancer Epidemiol. Biomarkers Prev., 2004, vol. 13, no. 10, pp. 1631—1639.

    CAS  PubMed  Google Scholar 

  34. Leng, S., Cheng, J., Pan, Z., et al., The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers, Cancer Epidemiol. Biomarkers Prev., 2005, vol. 14, no. 5, pp. 1295—1301. https://doi.org/10.1158/1055-9965.EPI-04-0690

    Article  CAS  PubMed  Google Scholar 

  35. Liu, A.L., Lu, W.Q., Wang, Z.Z., et al., Elevated levels of urinary 8-hydroxy-2'-deoxyguanosine, lymphocytic micronuclei, and serum glutathione S-transferase in workers exposed to coke oven emissions, Environ. Health Perspect., 2006, vol. 114, no. 5, pp. 673—677.

    Article  CAS  Google Scholar 

  36. Cheng, J., Leng, S., Dai, Y., et al., Association between nucleotide excision repair gene polymorphisms and chromosomal damage in coke-oven workers, Biomarkers, 2007, vol. 12, no. 1, pp. 76—86. https://doi.org/10.1080/13547500600950168

    Article  CAS  PubMed  Google Scholar 

  37. Cheng, J., Leng, S., Li, H., et al., Suboptimal DNA repair capacity predisposes coke-oven workers to accumulate more chromosomal damages in peripheral lymphocytes, Cancer Epidemiol. Biomarkers Prev., 2009, vol. 18, no. 3, pp. 987—993. https://doi.org/10.1158/1055-9965.EPI-08-0763

    Article  CAS  PubMed  Google Scholar 

  38. Duan, H., Leng, S., Pan, Z., et al., Biomarkers measured by cytokinesis-block micronucleus cytome assay for evaluating genetic damages induced by polycyclic aromatic hydrocarbons, Mutat. Res., 2009, vol. 677, no. 1—2, pp. 93—99. https://doi.org/10.1016/j.mrgentox.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  39. Dai, X., Deng, S., Wang, T., et al., Associations between 25 lung cancer risk-related SNPs and polycyclic aromatic hydrocarbon-induced genetic damage in coke oven workers, Cancer Epidemiol. Biomarkers Prev., 2014, vol. 23, no. 6, pp. 986—996. https://doi.org/10.1158/1055-9965.EPI-13-1251

    Article  CAS  PubMed  Google Scholar 

  40. Li, X., Wei, J., Xu, P., et al., The interaction of APEX1 variant with polycyclic aromatic hydrocarbons on increasing chromosome damage and lung cancer risk among male Chinese, Mol. Carcinog., 2015, vol. 54, suppl. 1, pp. 103—111. https://doi.org/10.1002/mc.22195

    Article  CAS  Google Scholar 

  41. Leng, S., Cheng, J., Pan, Z., et al., Associations between XRCC1 and ERCC2 polymorphisms and DNA damage in peripheral blood lymphocyte among coke oven workers, Biomarkers, 2004, vol. 9, no. 4—5, pp. 395—406. https://doi.org/10.1080/13547500400015618

    Article  CAS  PubMed  Google Scholar 

  42. Yang, X., Yuan, J., Sun, J., et al., Association between heat-shock protein 70 gene polymorphisms and DNA damage in peripheral blood lymphocytes among coke-oven workers, Mutat. Res., 2008, vol. 649, no. 1—2, pp. 221—229. https://doi.org/10.1016/j.mrgentox.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Sureshkumar, S., Balachandar, V., Devi, S.M., et al., Estimation of cytogenetic risk among coke oven workers exposed to polycyclic aromatic hydrocarbons, Acta Biochim. Pol., 2013, vol. 60, no. 3, pp. 375—379.

    Article  Google Scholar 

  44. Ada, A.O., Demiroglu, C., Yilmazer, M., et al., Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms, Arh. Hig. Rada Toksikol., 2013, vol. 64, no. 3, pp. 359—369. https://doi.org/10.2478/10004-1254-64-2013-2328

    Article  CAS  PubMed  Google Scholar 

  45. Celik, M., Donbak, L., Unal, F., et al., Cytogenic damage in workers from a coal-fired power plant, Mutat. Res., 2007, vol. 627, no. 2, pp. 158—163. https://doi.org/10.1016/j.mrgentox.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  46. Savchenko, Ya.A., Minina, V.I., Bakanova, M.L., et al., Role of gene—gene interactions in the chromosomal instability in workers at coal thermal power plants, Russ. J. Genet., 2018, vol. 54, no. 1, pp. 91—102. https://doi.org/10.1134/S1022795418010106

    Article  CAS  Google Scholar 

  47. Tĕsinska, E., Epidemiological studies of lung carcinoma incidence in uranium miners (accumulation and retrospective use of diagnostic data), Prague Med. Rep., 2009, vol. 110, no. 2, pp. 165—172.

    PubMed  Google Scholar 

  48. Isidro Montes, I., Rego Fernández, G., Reguero, J., et al., Respiratory disease in a cohort of 2579 coal miners followed up over a 20-year period, Chest, 2004, vol. 126, no. 2, pp. 622—629. https://doi.org/10.1378/chest.126.2.622

    Article  PubMed  Google Scholar 

  49. Ross, M.H. and Murray, J., Occupational respiratory disease in mining, Occup. Med. (London), 2004, vol. 54, no. 5, pp. 304—310. https://doi.org/10.1093/occmed/kqh073

    Article  CAS  Google Scholar 

  50. Veiga, L.H., Amaral, E.C., Colin, D., and Koifman, S., A retrospective mortality study of workers exposed to radon in a Brazilian underground coal mine, Radiat. Environ. Biophys., 2006, vol. 45, no. 2, pp. 125—134. https://doi.org/10.1007/s00411-006-0046-3

    Article  CAS  PubMed  Google Scholar 

  51. Attfield, M.D. and Kuempel, E.D., Mortality among U.S. underground coal miners: a 23-year follow-up, Am. J. Ind. Med., 2008, vol. 51, no. 4, pp. 231—245. https://doi.org/10.1002/ajim.20560

    Article  CAS  PubMed  Google Scholar 

  52. Go, L.H., Krefft, S.D., Cohen, R.A., and Rose, C.S., Lung disease and coal mining: what pulmonologists need to know, Curr. Opin. Pulm. Med., 2016, vol. 22, no. 2, pp. 170—178. https://doi.org/10.1097/MCP.0000000000000251

    Article  CAS  PubMed  Google Scholar 

  53. Fan, Y., Huang, J.J., Sun, C.M., et al., Prevalence of dyslipidaemia and risk factors in Chinese coal miners: a cross-sectional survey study, Lipids Health. Dis., 2017, vol. 16, no. 1, p. 161. https://doi.org/10.1186/s12944-017-0548-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shumate, A.M., Yeoman, K., Victoroff, T., et al., Morbidity and health risk factors among New Mexico miners: a comparison across mining sectors, J. Occup. Environ. Med., 2017, vol. 59, no. 8, pp. 789—794. https://doi.org/10.1097/JOM.0000000000001078

    Article  PubMed  PubMed Central  Google Scholar 

  55. Blackley, D.J., Reynolds, L.E., Short, C., et al., Progressive massive fibrosis in coal miners from 3 clinics in Virginia, JAMA, 2018, vol. 319, no. 5, pp. 500—501. https://doi.org/10.1001/jama.2017.18444

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bloch, K., Johnson, L.F., Nkosi, M., and Ehrlich, R., Precarious transition: a mortality study of South African ex-miners, BMC Public Health, 2018, vol. 18, no. 1, p. 862. https://doi.org/10.1186/s12889-018-5749-2

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ndlovu, N., Musenge, E., Park, S.K., et al., Four decades of pulmonary tuberculosis in deceased South African miners: trends and determinants, Occup. Environ. Med., 2018, vol. 75, no. 11, pp. 767—775. https://doi.org/10.1136/oemed-2017-104806

    Article  PubMed  Google Scholar 

  58. Skowronek, J. and Zemla, B., Epidemiology of lung and larynx cancers in coal mines in Upper Silesia—preliminary results, Health. Phys., 2003, vol. 85, no. 3, pp. 365—370.

    Article  CAS  Google Scholar 

  59. Hosgood, H.D. III, Chapman, R.S., Wei, H., et al., Coal mining is associated with lung cancer risk in Xuanwei, China, Am. J. Ind. Med., 2012, vol. 55, no. 1, pp. 5—10. https://doi.org/10.1002/ajim.21014

    Article  PubMed  Google Scholar 

  60. Tomaskova, H., Jirak, Z., Splichalova, A., and Urban, P., Cancer incidence in Czech black coal miners in association with coal workers’ pneumoconiosis, Int. J. Occup. Med. Environ. Health, 2012, vol. 25, no. 2, pp. 137—144. https://doi.org/10.2478/S13382-012-0015-9

    Article  PubMed  Google Scholar 

  61. Tomaskova, H., Splichalova, A., Slachtova, H., et al., Mortality in miners with coal-workers’ pneumoconiosis in the Czech Republic in the period 1992—2013, Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 3, pp. 1—12. https://doi.org/10.3390/ijerph14030269

    Article  Google Scholar 

  62. Taeger, D., Hagemeyer, O., Merget, R., et al., Is there a lung cancer risk in US coal miners?, Occup. Environ. Med., 2014, vol. 71, no. 7, p. 523. https://doi.org/10.1136/oemed-2014-102146

    Article  PubMed  Google Scholar 

  63. Taeger, D., Pesch, B., Kendzia, B., et al., Lung cancer among coal miners, ore miners and quarrymen: smoking-adjusted risk estimates from the synergy pooled analysis of case-control studies, Scand. J. Work Environ. Health, 2015, vol. 41, no. 5, pp. 467—477. https://doi.org/10.5271/sjweh.3513

    Article  PubMed  Google Scholar 

  64. Ong, T.M., Whong, W.Z., and Ames, R.G., Gastric cancer in coal miners: an hypothesis of coal mine dust causation, Med. Hypotheses, 1983, vol. 12, no. 2, pp. 159—165.

    Article  CAS  Google Scholar 

  65. Swaen, G.M., Meijers, J.M., and Slangen, J.J., Risk of gastric cancer in pneumoconiotic coal miners and the effect of respiratory impairment, Occup. Environ. Med., 1995, vol. 52, no. 9, pp. 606—610.

    Article  CAS  Google Scholar 

  66. Krech, E., Selinski, S., Blaszkewicz, M., et al., Urinary bladder cancer risk factors in an area of former coal, iron, and steel industries in Germany, J. Toxicol. Environ. Health, A, 2017, vol. 80, nos. 7—8, pp. 430—438. https://doi.org/10.1080/10937404.2017.1304719

    Article  CAS  Google Scholar 

  67. Mun, S.A., Larin, S.A., Zinchuk, S.F., et al., Assessment of the relative risks of oncological diseases among the employees of JSC KOKS of the city of Kemerovo, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 2005, vol. 118, no. 4, pp. 69—72.

    Google Scholar 

  68. Larin, S.A., Mun, S.A., Glushkov, A.N., et al., Morbidity with malignant neoplasms in the workers of Kemerovo CHP plant, Vopr. Onkol., 2007, vol. 53, no. 4, pp. 396—399.

    Google Scholar 

  69. Smerhovsky, Z., Landa, K., Rossner, P., et al., Risk of cancer in an occupationally exposed cohort with increased level of chromosomal aberrations, Environ. Health Perspect., 2001, vol. 109, no. 1, pp. 41—45. https://doi.org/10.1289/ehp.0110941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Minina, V.I., Larin, S.A., Mun, S.A., et al., Complex analysis of mutagenic and carcinogenic jeopardy of work conditions at Kemerovo KOKS company, Med. Truda Prom. Ekol., 2006, no. 11, pp. 19—25.

  71. Savchenko, Ya.A., Minina, V.I., Larin, S.A., et al., Complex analysis of mutagenic and carcinogenic jeopardy of work conditions at Kemerovo CHP plant, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2009, vol. 11, no. 1, pp. 1239—1242.

    Google Scholar 

Download references

Funding

This work was carried out with the financial support of the state assignment no. 0352-2019-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Savchenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, Y.A., Minina, V.I., Bakanova, M.L. et al. Genotoxic and Carcinogenic Effects of Industrial Factors in Coal Mining and Coal-Processing Industry (Review). Russ J Genet 55, 681–691 (2019). https://doi.org/10.1134/S1022795419060140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419060140

Keywords:

Navigation