Skip to main content
Log in

Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achary VMM, Parinandi NL, Panda BB (2012) Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L. Environ Mol Mutagen 53:550–560. doi:10.1002/em.21719

    Article  CAS  Google Scholar 

  • Albrecht C, Borm PJA, Adolf B, Timblin CR, Mossman BT (2002) In vitro and in vivo activation of extracellular signal-regulated kinases by coal dusts and quartz silica. Toxicol Appl Pharmacol 184:37–45. doi:10.1006/taap.2002.9500

    Article  CAS  Google Scholar 

  • Azqueta A, Slyskova J, Langie SA, O’Neill Gaivão I, Collins A (2014) Comet assay to measure DNA repair: approach and applications. Front Genet 25:5–288. doi:10.3389/fgene.2014.00288

    Google Scholar 

  • Begas E, Papandreou C, Tsakalof A, Daliani D, Papatsiba G, Asprodini E (2013) Simple and reliable HPLC method for the monitoring of methotrexate in osteosarcoma patients. J Chromatogr Sci:1–6. doi:10.1093/chromsci/bmt08

  • Bonassi S, El-Zein R, Bolognesi C, Fenech M (2011) Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis 26:93–100. doi:10.1093/mutage/geq075

    Article  CAS  Google Scholar 

  • Borm PJ (1997) Toxicity and occupational health hazards of coal fly ash (CFA). A review of data and comparison to coal mine dust. Ann Occup Hyg 41:659–676. doi:10.1093/annhyg/41.6.659

    Article  CAS  Google Scholar 

  • Borm PJA, Schins RPF, Albrecht C (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int. J. Cancer j. Int. Cancer 110:3–14. doi:10.1002/ijc.20064

    CAS  Google Scholar 

  • Castorena-Torres F, Bermudez de Leon M, Cisneros B, Zapata-Perez O, Salinas JE, Albores A (2008) Changes in gene expression induced by polycyclic aromatic hydrocarbons in the human cell lines HepG2 and A549. Toxicology. In Vitro 22:411–421

    Article  CAS  Google Scholar 

  • Cavalcante RM, De Lima DM, Correia LM, Nascimento RF (2008) Técnicas de extrações e procedimentos de CLEAN-UP para a determinação de Hidrocarbonetos Policíclicos Aromáticos (HPA) em sedimento da costa do Ceará. Quim Nov. 31:1371–1377. doi:10.1590/S0100-40422008000600019

  • Collins AR (2014) Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta 1840:794–800. doi:10.1016/j.bbagen.2013.04.022

    Article  CAS  Google Scholar 

  • De Leão FB, Kronbauer MA, Taffarel SR, Oliveira MLS, Silva LFO (2013) Towards self-assembling fullerenes and metallofullerenes in coal fly ash. In: Carbon, Rio de Janeiro.

  • Depoi FS, Pozebon D, Kalkreuth WD (2008) Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. Int J Coal Geol 76:227–236. doi:10.1016/j.coal.2008.07.013

    Article  CAS  Google Scholar 

  • Diabaté S, Mülhopt S, Paur HR, Wottrich R, Krug HF (2002) In vitro effects of incinerator fly ash on pulmonary macrophages and epithelial cells. Int J Hyg Environ Health 204:323–326. doi:10.1078/1438-4639-00109

    Article  Google Scholar 

  • Diabaté S, Bergfeldt B, Plaumann D, Ubel C, Weiss C (2011) Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells. Anal Bioanal Chem 401:3197–3212. doi:10.1007/s00216

    Article  Google Scholar 

  • Dizdaroglu M (2005) Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 591:45–59. doi:10.1016/j.mrfmmm.2005.01.033

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V (2003) Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann DellIstituto Super Sanità 39:405–410

    CAS  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10. doi:10.1186/1743-8977-2-10

    Article  Google Scholar 

  • Donbak L, Rencuzogullari E, Yavuz A, Topaktas M (2005) The genotoxic risk of underground coal miners from Turkey. Mutat Res 588:82–87. doi:10.1016/j.mrgentox.2005.08.014

    Article  CAS  Google Scholar 

  • Duez P, Dehon G, Kumps A, Dubois J (2003) Statistics of the Comet assay: a key to discriminate between genotoxic effects. Mutagenesis 18:159–166. doi:10.1093/mutage/18.2.159

    Article  CAS  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Ali AY, Musarrat J (2012) Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci Total Environ 15:331–338. doi:10.1016/j.scitotenv.2012.08.004

    Article  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104. doi:10.1038/nprot.2007.77

    Article  CAS  Google Scholar 

  • Gosset P, Lassalle P, Vanhée D, Wallaert B, Aerts C, Voisin C, Tonnel AB (1991) Production of tumor necrosis factor-alpha and interleukin-6 by human alveolar macrophages exposed in vitro to coal mine dust. Am J Respir Cell Mol Biol 5:431–436. doi:10.1165/ajrcmb/5.5.431

    Article  CAS  Google Scholar 

  • Guidi P, Nigro M, Bernardeschi M, Lucchesi P, Scarcelli V, Frenzilli G (2015) Does the crystal habit modulate the genotoxic potential of silica particles? A cytogenetic evaluation in human and murine cell lines. Mutat Res Genet Toxicol Environ Mutagen 792:46–52. doi:10.1016/j.mrgentox.2015.07.005

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2012) Arsenic, metals, fibres, and dusts. A review of human carcinogens http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf 100C: 526.

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1997) Silica, some silicates, coal dust and para-aramid fibrils. Monogr Eval Carcinog Risks Hum 68:1–475 http://monographs.iarc.fr/ENG/Monographs/vol68/mono68.pdf

    Google Scholar 

  • Jarvis IW, Dreij K, Mattsson Å, Jernström B, Stenius U (2014) Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology 3:27–39. doi:10.1016/j.tox.2014.03.012

    Article  Google Scholar 

  • Jenkins WD, Christian WJ, Mueller G, Robbins KT (2013) Population cancer risks associated with coal mining: a systematic review. PLoS One 8:71312. doi:10.1371/journal.pone.0071312

    Article  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. doi:10.1016/j.tox.2011.03.001

    Article  CAS  Google Scholar 

  • Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Inhaled particles and lung cancer. Part a: mechanisms. Int J Cancer 109:799–809

    Article  CAS  Google Scholar 

  • León-Mejía G, Espitia-Pérez L, L.S H-G, Da Silva J, Hartmann A, Henriques JA, Quintana M (2011) Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci. Total Environ 409:686–691. doi:10.1016/j.scitotenv.2010.10.049

    Article  Google Scholar 

  • León-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, Henriques JAP, Da Silva J (2014) Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf 107:133–139. doi:10.1016/j.ecoenv.2014.05.023

    Article  Google Scholar 

  • Liu G, Niu Z, Van Niekerk D, Xue J, Zheng L (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Rev Environ Contam Toxicol 192:1–28

    CAS  Google Scholar 

  • Lodovici M, Bigagli E, Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure, oxidative stress and air pollution exposure. J Toxicol J Toxicol 2011:9. doi:10.1155/2011/487074

    Google Scholar 

  • Martinello K, Oliveira MLS, Molossi FA, Ramos CG, Teixeira EC, Kautzmann RM, Silva LFO (2014) Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci Total Environ 470:444–452. doi:10.1016/j.scitotenv.2013.10.007

    Article  Google Scholar 

  • Minina VI, Kulemin IE, Tolotchko TA, Meĭer AV, Savtchenko IA, Volobaev VP, Gafarov NI, Semenikhina MV (2015) Genotoxic effects of occupational environment in Kuzbass miners. Med Tr Prom Ekol:4–8

  • National Research Council (NRC) (2006) Managing coal combustion residues in mines. National Academies Press, Washington DC

    Google Scholar 

  • Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33:431–453. doi:10.1016/0016-7037(69)90126-4

    Article  CAS  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. doi:10.1080/08958370490439597

    Article  Google Scholar 

  • Oliveira MLS, Waanders F, Silva LFO, Jasper A, Sampaio CH, McHabe D, Hatch RS, Hower JC (2011) A multi-analytical approach to understand the chemistry of Fe-minerals in fee coals and ashes. Coal Combustion and Gasification Products 3:51–62. doi:10.4177/CCGP-D11-00006.1

    Article  Google Scholar 

  • Oliveira MLS, Ward CR, French D, Hower JC, Querol X, Silva LFO (2012) Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int J Coal Geol 94:314–325. doi:10.1016/j.coal.2011.10.004

    Article  CAS  Google Scholar 

  • Querol X, Whateley MKG, Fernandez-Turiel JL, Tuncali E (1997) Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int J Coal Geol 33:255–271. doi:10.1016/S0166-5162(96)00044-4

    Article  CAS  Google Scholar 

  • Quispe D, Pérez-López R, Silva LFO, Nieto JM (2012) Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil. Fuel 94:495–503. doi:10.1016/j.fuel.2011.09.034

    Article  CAS  Google Scholar 

  • Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A, Chandrasekaran N (2016) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 35:170–183. doi:10.1177/0960327115579208

    Article  CAS  Google Scholar 

  • Ribeiro J, Valentim B, Ward C, Flores D (2011) Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact. Int. J. Coal Geol 86:204–212. doi:10.1016/j.coal.2011.01.010

    Article  CAS  Google Scholar 

  • Rohr P, Kvitko K, da Silva FR, Menezes AP, Porto C, Sarmento M, Decker N, Reyes JM, Allgayer M d C, Furtado TC, Salvador M, Branco C, da Silva J (2013) Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res 758:23–28. doi:10.1016/j.mrgentox.2013.08.006

    Article  CAS  Google Scholar 

  • Sanchís J, Božović D, Al-harbi NA, Silva LF, Farré M, Barceló D (2013) Quantitative trace analysis of fullerenes in river sediment from Spain and soils from Saudi Arabia. Anal Bioanal Chem 405:5915–5923. doi:10.1007/s00216-013-6924-z

    Article  Google Scholar 

  • Sanchís J, Oliveira LFS, De Leão FP, Farré M, Barceló D (2015) Liquid chromatography-atmospheric pressure photoionization-orbitrap analysis of fullerene aggregates on surface soils and river sediments from Santa Catarina (Brazil). Sci Total Environ 505:172–179. doi:10.1016/j.scitotenv.2014.10.006

    Article  Google Scholar 

  • Sander M, Wilson S (2005) Base excision repair. AP Endonucleases and DNA Glycosylases, Wiley, Chichester. doi:10.1038/npg.els.0003871

    Google Scholar 

  • Santa Maria SR, Arana M, Ramirez O (2007) Chromosomal aberrations in peripheral lymphocytes from male native miners working in the Peruvian Andes. Genet Mol Biol 30:1135–1138. doi:10.1590/S1415-47572007000600017

    Article  Google Scholar 

  • Schins RP, Borm PJ (1999) Mechanisms and mediators in coal dust induced toxicity: a review. Ann Occup Hyg 43:7–33

    CAS  Google Scholar 

  • Sharma P, Bhushan A, Rama J, Dubey S, Pessarakli M (2012a) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. 26. doi: 10.1155/2012/217037

  • Sharma A, Soussaline F, Sallette J, Dybdahl M (2012b) The influence of the number of cells scored on the sensitivity in the comet assay. Mutat Res 749:70–75. doi:10.1016/j.mrgentox.2012.07.003

    Article  CAS  Google Scholar 

  • Silva LFO, Moreno T, Querol X (2009) An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ 407:4972–4974. doi:10.1016/j.scitotenv.2009.05.044

    Article  CAS  Google Scholar 

  • Silva L, Ward CR, Hower J, Izquierdo M, Waanders F, Oliveira M, Li Z, Hatch R, Querol X (2010) Mineralogy and leaching characteristics of coal ash from a major Brazilian power plant. Coal Combustion and Gasification Products 2:51–65. doi:10.4177/CCGP-D-10-00005.1

    Article  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. doi:10.1016/0014-4827(88)90265-0

    Article  CAS  Google Scholar 

  • Singh R, Sram RJ, Binkova B, Kalina I, Popov TA, Georgieva T, Garte S, Taioli E, Farmer PB (2007) The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. Mutat Res 620:83–92. doi:10.1016/j.mrfmmm.2007.02.025

    Article  CAS  Google Scholar 

  • Sun F, Littlejohn D, Gibson MG (1998) Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Anal Chim Acta 25:1–11. doi:10.1016/S0003-2670(98)00186-X

    Article  CAS  Google Scholar 

  • van Maanen JM, Borm PJ, Knaapen A, van Herwijnen M, Schilderman PA, Smith KR, Aust AE, Tomatis M, Fubini B (1999) In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal Toxicol 11:1123–1141. doi:10.1080/089583799196628

    Article  Google Scholar 

  • Vassilev SV, Vassileva CG (1996a) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47:261–280. doi:10.1016/0378-3820(96)01016-8

    Article  CAS  Google Scholar 

  • Vassilev SV, Vassileva CG (1996b) Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Process Technol 48:85–106. doi:10.1016/S0378-3820(96)01021-1

    Article  CAS  Google Scholar 

  • Volobaev VP, Sinitsky MY, Larionov AV, Druzhinin VG, Gafarov NI, Minina VI, Kulemin JE (2015) Modifying influence of occupational inflammatory diseases on the level of chromosome aberrations in coal miners. Mutagenesis 31(2):225–229. doi:10.1093/mutage/gev080

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional para o Desenvolvimento Científico e Tecnológico—CNPq, Brazil; Universal Grant Number 470833; Productivity Grant Numbers 300902 and 303364; and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil, Grant Number PRONEM 11/2070 and PRONEX/FAPERGS/CNPq Number 10/0044-3). Grethel León-Mejía benefited from a scholarship financed by PEC-PG/CAPES. Marcos L.S. Oliveira and Luis F.O. Silva benefited from a scholarship financed by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Grethel León-Mejía or João Antônio Pêgas Henriques.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Mejía, G., Silva, L.F.O., Civeira, M.S. et al. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ Sci Pollut Res 23, 24019–24031 (2016). https://doi.org/10.1007/s11356-016-7623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7623-z

Keywords

Navigation