Skip to main content
Log in

Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Qualitative and quantitative composition of fatty acids (FA) in the lipids of vegetative organs of the halophyte Suaeda altissima (L.) Pall. grown at different NaCl concentrations in nutrient solution was studied. Along with this, the biomass of these organs, the content of water and Na+, Cl, and K+ ions in them, and the ultrastructure of root and leaf cells were determined. At both low (1 mM) and high (750 mM) NaCl concentrations in nutrient solution, plants could maintain growth and water content in organs, demonstrating a noticeable increase in the dry weight and a slight increase in the water content at 250 mM NaCl. At all NaCl concentrations in nutrient solution, S. altissima tissues contained a relatively high K+ amount. Under salinity, Na+ and Cl ions contributed substantially into the increase in the cell osmotic pressure, i.e., a decrease in their water potential; in the absence of salinity, K+ fulfilled this function. In the cells of both roots and leaves, NaCl stimulated endo- and exocytosis, supposedly involved in the vesicular compound transport. 750 mM NaCl induced plasmolysis and changes in the membrane structure, which can be interpreted as degradation processes. Under optimal NaCl concentration in medium (250 mM), the content of lipids in plant aboveground organs per fresh weight was more than 2.5-fold higher than under 1 or 750 mM NaCl, whereas in the roots opposite patten was observed. When plants were grown under non-optimal conditions, substantial changes occurred in the qualitative and quantitative FA composition in lipids of both aboveground organs and roots. Observed changes are discussed in relation to processes underlying S. altissima salt tolerance and those of disintegration occurring at the high external NaCl concentration (750 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UI:

unsaturation index, FA-fatty acid

FAME:

fatty acid methyl ester

PS:

photosystem

References

  1. Los, D.A., Desaturases of fatty acids: structure, regulation of expression, and functioning, Usp. Biol. Khim., 2001, vol. 41, pp. 163–198.

    CAS  Google Scholar 

  2. Jones, A., Davies, H.M., and Voelker, T.A., Palmitoylacyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases, Plant Cell, 1995, vol. 7, pp. 359–371.

    PubMed  CAS  Google Scholar 

  3. Uemura, M. and Steponkus, P.L., Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane, J. Plant Res., 1999, vol. 112, pp. 245–254.

    Article  Google Scholar 

  4. Mashaghi, A., Partovi-Azar, P., Jadidi, T., Nafari, N., Maass, Ph., Rahimi, Tabar, M.R., Bonn, M., and Bakker, J.H., Hydration strongly affects the molecular and electronic structure of membrane phospholipids, J. Chem. Phys., 2012, vol. 136, 114709, doi 10.1063/1.3694280

    Article  PubMed  Google Scholar 

  5. Maurel, C., Aquaporins and water permeability of plant membranes, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 399–429.

    Article  PubMed  CAS  Google Scholar 

  6. Shapiguzov, A.Yu., Aquaporins: structure, systematics, and regulatory features, Russ. J. Plant Physiol., 2004, vol. 51, pp. 127–137.

    Article  CAS  Google Scholar 

  7. Gorham, J., Betaines in higher plants — biosynthesis and role in stress metabolism, Amino Acids and Their Derivatives in Higher Plants, Wallsgrove, R.M., Ed., Cambridge: Cambridge Univ. Press, 1995, pp. 171–203.

    Google Scholar 

  8. Sakamoto, A. and Murata, N., The role of glycine betaine in the protection of plants from stress: clues from transgenic plants, Plant Cell Environ., 2002, vol. 25, pp. 163–171.

    Article  PubMed  CAS  Google Scholar 

  9. Parks, G.E., Ditrich, M.A., and Schumaker, K.S., Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl, J. Exp. Bot., 2002, vol. 53, pp. 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  10. Jitender, G., Glycinebetaine and abiotic stress tolerance in plants, Plant Signal. Behav., 2011, vol. 6, pp. 1746–1751.

    Article  Google Scholar 

  11. Balnokin, Yu.V., Kurkova, E.B., Myasoedov, N.A., Lun’kov, R.V., Shamsutdinov, N.Z., Egorova, E.A., and Bukhov, N.G., Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt-water balance by extremely high concentrations of NaCl, Russ. J. Plant Physiol., 2004, vol. 51, pp. 815–821.

    Article  CAS  Google Scholar 

  12. Hajibagheri, M.A. and Flowers, T.J., X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum., Planta, 1989, vol. 177, pp. 131–134.

    Article  CAS  Google Scholar 

  13. Lun’kov, R.V., Andreev, I.M., Myasoedov, N.A., Khailova, G.F., Kurkova, E.B., and Balnokin, Yu.V., Functional identification of H+-ATPase and Na+/H+ antiporter in the plasma membrane isolated from the root cells of salt-accumulating halophyte Suaeda altissima, Russ. J. Plant Physiol., 2005, vol. 52, pp. 635–644.

    Article  Google Scholar 

  14. Shuvalov, A.V., Orlova, Yu.V., Myasoedov, N.A., Belyaev, D.V., Khalilova, L.A., Andreev, I.M., and Balnokin, Yu.V., Functional identification of Cl/H+-antiporter in membrane fraction of root cells in the halophyte Suaeda altissima (L.) Pall, Proc. Mosk. Fiz. Tekh. Inst., 2012, vol. 4, pp. 56–63.

    Google Scholar 

  15. Balnokin, Yu.V., Kotov, A.A., Myasoedov, N.A., Khailova, G.F., Kurkova, E.B., Lun’kov, R.V., and Kotova, L.M., Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte Suaeda altissima, Russ. J. Plant Physiol., 2005, vol. 52, pp. 489–496.

    Article  CAS  Google Scholar 

  16. Robinson, S.P. and Downton, W.J.S., Potassium, sodium and chloride ion concentration in leaves and isolated chloroplasts of the halophyte Suaeda australis R. Br., Aust. J. Plant Physiol., 1985, vol. 12, pp. 471–478.

    Article  CAS  Google Scholar 

  17. Maali-Amiri, R., Goldenkova-Pavlova, I.V., Yur’eva, N.A., Pchelkin, V.P., Tsydendambaev, V.D., Vereshchagin, A.G., Deryabin, A.N., Trunova, T.I., Los, D.A., and Nosov, A.M., Lipid fatty acid composition of potato plants transformed with the 12-desaturase gene from cyanobacterium, Russ. J. Plant Physiol., 2007, vol. 54, pp. 600–606.

    Article  CAS  Google Scholar 

  18. Sidorov, R.A., Zhukov, A.V., Vereshchagin, A.G., and Tsydendambaev, V.D., Occurrence of fatty acid lower-alkyl esters in euonymus fruits, Russ. J. Plant Physiol., 2012, vol. 59, pp. 326–332.

    Article  CAS  Google Scholar 

  19. Balnokin, Yu.V., Kurkova, E.B., Khalilova, L.A., Myasoedov, N.A., and Yusufov, A.G., Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport, Russ. J. Plant Physiol., 2007, vol. 54, pp. 797–805.

    Article  CAS  Google Scholar 

  20. Hicks, G.R. and Raikhe, N.V., Advances in dissecting endomembrane trafficking with small molecules, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 706–713.

    Article  PubMed  CAS  Google Scholar 

  21. Grunewald, W. and Friml, J., The march of the pins: developmental plasticity by dynamic polar targeting in plant cells, EMBO J., 2010, vol. 29, pp. 2700–2714.

    Article  PubMed  CAS  Google Scholar 

  22. Tester, M. and Davenport, R., Na+ tolerance and Na+ transport in higher plants, Ann. Bot., 2003, vol. 91, pp. 503–527.

    Article  PubMed  CAS  Google Scholar 

  23. Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., Goh, T., Sato, M.H., Morita, M.T., and Tasaka, M., Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis, Plant Cell Physiol., 2009, vol. 50, pp. 2023–2033.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, J., Liu, H., Sun, J., Li, B., Zhu, Q., Chen, S., and Zhang, H., Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth, PLoS ONE, 2012, vol. 7, p. e30355, doi 10.1371/journal.pone.0030355

    Article  PubMed  CAS  Google Scholar 

  25. Allakhverdiev, S.I., Kinoshita, M., Inaba, M., Suzuki, I., and Murata, N., Unsaturated fatty acids in membrane lipids protect the photosynthetic mashinery against salt-induced damage in Synechococcus, Plant Physiol., 2001, vol. 125, pp. 1842–1853.

    Article  PubMed  CAS  Google Scholar 

  26. Sui, N., Li, K., Song, J., and Wang, B.-S., Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity, Photosynthetica, 2010, vol. 48, pp. 623–629.

    Article  CAS  Google Scholar 

  27. Harzallah-Skhiri, F., Guillot-Salomon, T., and Signol, M., Biochemical and ultrastructural changes in plastids from various alfalfa cultivars growing under salt stress, Biochemistry and Metabolism of Plant Lipids, Wintermans, J.F.G.M. and Kuiper, P.J.C., Eds., Amsterdam: Elsevier, 1982, pp. 423–426.

    Google Scholar 

  28. Zarrouk, M. and Cherif, A., Lipid contents of halophytic plants and salt resistance, Z. Pflanzenphysiol., 1983, vol. 112, pp. 373–380.

    CAS  Google Scholar 

  29. Wu, J., Seliskar, D.M., and Gallagher, J.L., Salt tolerance in the salt marsh plant Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition, Physiol. Plant., 1998, vol. 102, pp. 307–317.

    Article  CAS  Google Scholar 

  30. Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., and Evans, E., Effect of chain length and unsaturation on elasticity of lipid bilayers, Biophys. J., 2000, vol. 79, pp. 328–339.

    Article  PubMed  CAS  Google Scholar 

  31. Leach, R.P., Wheeler, K.P., Flowers, T.J., and Yeo, A.R., Molecular markers for ion compartmentation in cells of higher plants. II. Lipid composition of the tonoplast of the halophyte Suaeda maritima L., J. Exp. Bot., 1990, vol. 41, pp. 1089–1094.

    Article  CAS  Google Scholar 

  32. Mansour, M.M.F., van Hasselt, P.R., and Kuiper, P.J.C., Plant membrane lipid alterations induced by NaCl in winter wheat roots, Physiol. Plant., 1994, vol. 92, pp. 473–478.

    Article  CAS  Google Scholar 

  33. Surjus, A. and Durand, M., Lipid changes in soybean root membranes in response to salt treatment, J. Exp. Bot., 1996, vol. 47, pp. 17–23.

    Article  CAS  Google Scholar 

  34. Stuiver, C.E.E., Kuiper, P.J.C., and Marschner, H., Lipids from bean, barley and sugar beet in relation to salt resistance, Physiol. Plant., 1978, vol. 42, pp. 124–128.

    Article  CAS  Google Scholar 

  35. Wu, J., Seliskar, D.M., and Gallagher, J.L., The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress, Am. J. Bot., 2005, vol. 92, pp. 852–858.

    Article  PubMed  CAS  Google Scholar 

  36. Hirayama, O. and Mihara, M., Characterization of membrane lipids of higher plants different in salt tolerance, Agric. Biol. Chem., 1987, vol. 51, pp. 3215–3221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Tsydendambaev.

Additional information

Original Russian Text © V.D. Tsydendambaev, T.V. Ivanova, L.A. Khalilova, E.B. Kurkova, N.A. Myasoedov, Yu.V. Balnokin, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 5, pp. 700–711.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsydendambaev, V.D., Ivanova, T.V., Khalilova, L.A. et al. Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity. Russ J Plant Physiol 60, 661–671 (2013). https://doi.org/10.1134/S1021443713050142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713050142

Keywords

Navigation