Skip to main content
Log in

Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

White goosefoot plants (Chenopodium album L. of the family Chenopodiaceae) grown at various NaCl concentrations (3–350 mM) in the nutrient solution were used to study the cell ultrastructure as well as the qualitative and quantitative composition of fatty acids in the lipids of vegetative organs. In addition, the biomass of Ch. album vegetative organs, the water content, and the concentrations of K+, Na+, and Cl were determined. The growth rates of plants raised at NaCl concentrations up to 200–250 mM were the same as for the control plants grown at 3 mM NaCl; the growth parameters remained rather high even at NaCl concentrations of 300–350 mM. The water content in Ch. album organs remained high at all NaCl concentrations tested. Analysis of the ionic status of Ch. album revealed a comparatively high K+ content in plant organs. At low NaCl concentrations in the nutrient solution, K+ ions were the dominant contributors to the osmolarity (the total concentration of osmotically active substances) and, consequently, to the lowered cell water potential in leaves and roots. As the concentration of NaCl was increased, the plant organs accumulated larger amounts of Na+ and Cl, and the contribution of these ion species to osmolarity became increasingly noticeable. At 300–350 mM NaCl the contribution of Na+ and Cl to osmolarity was comparable to that of K+. An electron microscopy study of Ch. album cells revealed that, apart from the usual response to salinity manifested in typical ultrastructural changes of chloroplasts, mitochondria, and the cytosol, the salinity response comprised the enhanced formation of endocytic structures and exosomes and stimulation of autophagy. It is supposed that activation of these processes is related to the removal from the cytoplasm of toxic substances and the cell structures impaired by salt stress conditions. The qualitative and quantitative composition of fatty acids in the lipids of Ch. album organs was hardly affected by NaCl level. These findings are consistent with the high salt tolerance of Ch. album, manifested specifically in retention of growth functions under wide-range variations of NaCl concentration in the nutrient solution and in maintenance of K+, Na+, and Cl content in organs at a constant level characteristic of untreated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

FA:

fatty acids

FAME:

fatty acid methyl esters

PM:

plasma membrane

References

  1. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  2. Otegui, M.S. and Spitzer, C., Endosomal functions in plants, Traffic, 2008, vol. 9, pp. 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  3. Doherty, G.J. and McMahon, H.T., Mechanisms of endocytosis, Annu. Rev. Biochem., 2009, vol. 78, pp. 857–902.

    Article  CAS  PubMed  Google Scholar 

  4. Reyes, F.C., Buono, R., and Otegui, M.S., Plant endosomal trafficking pathways, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 666–673.

    Article  CAS  PubMed  Google Scholar 

  5. Baral, A., Irani, N.G., Fujimoto, M., Nakano, A., Mayor, S., and Mathew, M.K., Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root, Plant Cell, 2015, vol. 27, no. 4, pp. 1297–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maurel, C., Aquaporins and water permeability of plant membranes, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 399–429.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiguzov, A.Yu., Aquaporins: structure, systematics, and regulatory features, #, 2004, vol. 51, pp. 127–137.

  8. Gorham, J., Betaines in higher plants–biosynthesis and role in stress metabolism, Amino Acids and Their Derivatives in Higher Plants, Wallsgrove, R.M., Ed., Cambridge: Cambridge Univ. Press, 1995, pp. 171–203.

  9. Los’, D.A., Structure, expression regulation, and functions of fatty acid desaturase, Usp. Biol. Khim., 2001, vol. 41, pp. 163–198.

    Google Scholar 

  10. Sakamoto, A. and Murata, N., The role of glycine betaine in the protection of plants from stress: clues from transgenic plants, Plant Cell Environ., 2002, vol. 25, pp. 163–171.

    Article  CAS  PubMed  Google Scholar 

  11. Uemura, M. and Steponkus, P.L., Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane, J. Plant Res., 1999, vol. 112, pp. 245–254.

    Article  Google Scholar 

  12. Mashaghi, A., Partovi-Azar, P., Jadidi, T., Nafari, N., Maass, Ph., Tabar, M.R., Bonn, M., and Bakker, J.H., Hydration strongly affects the molecular and electronic structure of membrane phospholipids, J. Chem. Phys., 2012, vol. 136, p. 114709. doi 10.1063/1.3694280

    Article  PubMed  Google Scholar 

  13. Parks, G.E., Ditrich, M.A., and Schumaker, K.S., Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl, J. Exp. Bot., 2002, vol. 53, pp. 1055–1065.

    Article  CAS  PubMed  Google Scholar 

  14. Jitender, G., Glycinebetaine and abiotic stress tolerance in plants, Plant Signal. Behav., 2011, vol. 6, pp. 1746–1751.

    Article  Google Scholar 

  15. Tsydendambaev, V.D., Ivanova, T.V., Khalilova, L.A., Kurkova, E.B., Myasoedov, N.A., and Balnokin, Yu.V., Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity, Russ. J. Plant Physiol., 2013, vol. 60, pp. 661–671.

    Article  CAS  Google Scholar 

  16. Robinson, S.P. and Downton, W.J.S., Potassium, sodium and chloride ion concentration in leaves and isolated chloroplasts of the halophyte Suaeda australis R. Br., Aust. J. Plant Physiol., 1985, vol. 12, pp. 471–478.

    Article  CAS  Google Scholar 

  17. Sidorov, R.A., Zhukov, A.V., Vereshchagin, A.G., and Tsydendambaev, V.D., Occurrence of fatty acid loweralkyl esters in euonymus fruits, Russ. J. Plant Physiol., 2012, vol. 59, pp. 326–332.

    Article  CAS  Google Scholar 

  18. Balnokin, Yu.V., Kurkova, E.B., Myasoedov, N.A., Lun’kov, R.V., Shamsutdinov, N.Z., Egorova, E.A., and Bukhov, N.G., Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt–water balance by extremely high concentrations of NaCl, Russ. J. Plant Physiol., 2004, vol. 51, pp. 815–821.

    Article  CAS  Google Scholar 

  19. Klionsky, D.J., Abdalla, F.C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., and Agostinis, P., Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, 2012, vol. 8, pp. 445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balnokin, Yu.V., Kurkova, E.B., Khalilova, L.A., Myasoedov, N.A., and Yusufov, A.G., Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport, Russ. J. Plant Physiol., 2007, vol. 54, pp. 797–805.

    Article  CAS  Google Scholar 

  21. Yáñez-Mó, M., Siljander, P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., Colás, E., Cordeiro-da Silva, A., Fais, S., Falcon-Perez, J.M., Ghobrial, I.M., et al., Biological properties of extracellular vesicles and their physiological functions, J. Extracell. Vesicles, 2015, vol. 4, p. 27066. doi 10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  22. Hara-Nishimura, I. and Hatsugai, N., The role of vacuole in plant cell death, Cell Death Differ., 2011, vol. 18, pp. 1298–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Balnokin, Y., Myasoedov, N., Popova, L., Tikhomirov, A., Ushakova, S., Lasseur, C., and Gros, J.-B., Use of halophytic plants for recycling NaCl in human liquid waste in a bioregenerative life support system, Adv. Space Res., 2010, vol. 46, pp. 768–774.

    Article  CAS  Google Scholar 

  24. Balnokin, Yu.V., Kotov, A.A., Myasoedov, N.A., Khailova, G.F., Kurkova, E.B., Lun’kov, R.V., and Kotova, L.M., Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium–root–leaf system of a halophyte Suaeda altissima, Russ. J. Plant Physiol., 2005, vol. 52, pp. 489–496.

    Article  CAS  Google Scholar 

  25. Orlova, Yu.V., Myasoedov, N.A., Kirichenko, E.B., and Balnokin, Yu.V., Contributions of inorganic ions, soluble carbohydrates, and multiatomic alcohols to water homeostasis in Artemisia lerchiana and A. pauciflora, Russ. J. Plant Physiol., 2009, vol. 56, pp. 200–210.

    Article  CAS  Google Scholar 

  26. Khailova, G.F., Popova, L.G., Khalilova, L.A., Myasoedov, N.A., and Balnokin, Yu.V., Conversion of quaternary ammonium compounds in the whole plant system of the halophyte Suaeda altissima, Russ. J. Plant Physiol., 2014, vol. 61, pp. 634–638.

    Article  CAS  Google Scholar 

  27. Marty, F., Plant vacuoles, Plant Cell, 1999, vol. 11, pp. 587–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leshem, Y., Melamed-Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., Cohen, G., and Levine, A., Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 18008–18013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J., Liu, H., Sun, J., Li, B., Zhu, Q., Chen, S., and Zhang, H., Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth, PLoS One, 2012, vol. 7, p. 30355. doi 10.1371/journal.pone.0030355

    Article  Google Scholar 

  30. Allakhverdiev, S.I., Kinoshita, M., Inaba, M., Suzuki, I., and Murata, N., Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus, Plant Physiol., 2001, vol. 125, pp. 1842–1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Balnokin.

Additional information

Original Russian Text © T.V. Ivanova, O.V. Maiorova, Yu.V. Orlova, E.I. Kuznetsova, L.A. Khalilova, N.A. Myasoedov, Yu.V. Balnokin, V.D. Tsydendambaev, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 6, pp. 783–795.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, T.V., Maiorova, O.V., Orlova, Y.V. et al. Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions. Russ J Plant Physiol 63, 763–775 (2016). https://doi.org/10.1134/S1021443716060054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716060054

Keywords

Navigation