Skip to main content
Log in

Modification of polyacrylonitrile membranes by incoherent IR radiation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN) membranes with the rejection coefficients of bovine serum albumin (M w = 69000 Da) up to 97% have been developed. The effect of IR irradiation of PAN membranes at temperatures to 180°С has been studied for the first time. It has been found that the IR modification of the membranes at 120°С for 5 min makes PAN insoluble in a wide range of organic solvents. The test PAN membranes were obtained from PAN solutions in dimethyl sulfoxide (DMSO) with different polymer concentrations in casting solution. The morphology and filtration characteristics of the membranes are almost unaffected by the treatment. The permeability of the membranes to DMSO, dimethylformamide (DMF), dimethylacetamide (DMAA), and N-methyl-2-pyrrolidone (NMP) has been measured. It has been demonstrated that the IR-treated PAN membranes can be used for filtering the above solvents, although the initial polymer is soluble in these solvents. These membranes can also be used as supports of chemically resistant nanofiltration membranes for aprotic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Tsai et al., Sep. Purif. Technol. 100, 97 (2012).

    Article  CAS  Google Scholar 

  2. I. C. Kim, H. G. Yun, and K. H. Lee, J. Membr. Sci. 199, 75 (2002).

    Article  CAS  Google Scholar 

  3. L. Germic et al., J. Membr. Sci. 132, 131 (1997).

    Article  CAS  Google Scholar 

  4. Encyclopedia of Membranes, Ed. by E. Drioli and L. Giorno (Springer, Berlin, 2016).

  5. S. M. Saufi and A. F. Ismail, Carbon 42, 241 (2004).

    Article  CAS  Google Scholar 

  6. V. M. Linkov, R. D. Sanderson, and E. P. Jacobs, Polym. Int. 35, 239 (1994).

    Article  CAS  Google Scholar 

  7. A. F. Ismail and L. I. B. David, J. Membr. Sci. 193, 1 (2001).

    Article  CAS  Google Scholar 

  8. T. S. Anokhina, A. A. Yushkin, I. S. Makarov, et al., Pet. Chem. 56, 1097 (2016).

    Article  Google Scholar 

  9. A. A. Yushkin, T. S. Anokhina, and A. V. Volkov, Pet. Chem. 55, 746 (2015).

    Article  CAS  Google Scholar 

  10. V. V. Parashchuk and A. V. Volkov, Krit. Tekhnol. Membr. 37, 25 (2008).

    Google Scholar 

  11. N. Stafie, D. F. Stamatialis, and M. Wessling, Sep. Purif. Technol. 45, 220 (2005).

    Article  CAS  Google Scholar 

  12. A. V. Volkov et al., J. Membr. Sci. 333, 88 (2009).

    Article  CAS  Google Scholar 

  13. K. Ebert et al., J. Membr. Sci. 285, 75 (2006).

    Article  CAS  Google Scholar 

  14. P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, Chem. Soc. Rev. 37, 365 (2008).

    Article  CAS  Google Scholar 

  15. L. E. M. Gevers, I. F. J. Vankelecom, and P. A. Jacobs, J. Membr. Sci. 278, 199 (2006).

    Article  CAS  Google Scholar 

  16. Z. J. Li et al., Integr. Ferroelectr. 152, 67 (2014).

    Article  CAS  Google Scholar 

  17. G. Kamińska et al., Desalin. Water Treat. 57, 1344 (2016).

    Article  Google Scholar 

  18. V. P. Kasperchik, A. L. Yaskevich, and A. V. Bil’-dyukevich, Ser. Krit. Tekhnol. Membr. 28 (4), 35 (2005).

    Google Scholar 

  19. W. X. Bao, Z. L. Xu, and H. Yang, Sci. Chin., Ser. B: Chem. 52, 683 (2009).

    Article  CAS  Google Scholar 

  20. A. Volkov et al., J. Membr. Sci. 440, 98 (2013).

    Article  CAS  Google Scholar 

  21. A. Yushkin et al., React. Funct. Polym. 86, 269 (2015).

    Article  CAS  Google Scholar 

  22. T. S. Anokhina et al., Sep. Purif. Technol. 156, 683 (2015).

    Article  CAS  Google Scholar 

  23. S. R. Hosseinabadi et al., Sep. Purif. Technol. 147, 320 (2015).

    Article  CAS  Google Scholar 

  24. L. M. Zemtsov and G. P. Karpacheva, Vysokomol. Soedin., Ser. A 36, 919 (1994).

    CAS  Google Scholar 

  25. L. M. Zemtsov et al., Polym. Sci., Ser. A 48, 633 (2006).

    Article  Google Scholar 

  26. L. M. Zemtsov et al., Vysokomol. Soedin., Ser. A 48, 977 (2006).

    CAS  Google Scholar 

  27. J. Vojtěchovská and L. Kvitek, CHEMICA 44, 25 (2005).

    Google Scholar 

  28. C. J. van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev. 88, 927 (1988).

    Article  CAS  Google Scholar 

  29. Yu. G. Bogdanova and V. D. Dolzhikova, Butlerovskie Soobshch. 35 (8), 81 (2013).

    Google Scholar 

  30. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  31. N. Stafie, D. F. Stamatialis, and M. Wessling, Sep. Purif. Technol. 45, 220 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yushkin.

Additional information

Original Russian Text © A.A. Yushkin, M.N. Efimov, A.A. Vasilev, Yu.G. Bogdanova, V.D. Dolzhikova, G.P. Karpacheva, A.V. Volkov, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 2, pp. 125–131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkin, A.A., Efimov, M.N., Vasilev, A.A. et al. Modification of polyacrylonitrile membranes by incoherent IR radiation. Pet. Chem. 57, 341–346 (2017). https://doi.org/10.1134/S0965544117040089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117040089

Keywords

Navigation