Skip to main content
Log in

Formation of Multilayer Membranes from One Polymer Using IR Treatment

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

In this paper, a new method of layer-by-layer formation of monopolymer membranes based on polyacrylonitrile (PAN) is proposed. The proposed approach allows independent adjustment of the structure and characteristics of individual layers of the membrane to achieve high performance characteristics. IR radiation has been used to modify PAN, the effect of which has allowed to convert the polymer into an insoluble form for the application of subsequent layers. An important feature of IR modification is that the pore size and permeability of the membranes remain unchanged. This makes it possible to form the individual membrane layers under different conditions. The obtained membranes have a well-defined spongy layer on the surface and finger-like pores in the other part of the membrane volume. The presence of the spongy layer on the surface reduces the probability of formation of undesirable defects, which reduce the membrane retention. As a result, defect-free membranes that combine a low molecular weight of MWCO cut-off equal to 1800 g/mol and a fairly good for such a dense membrane permeability of 38.7 L/m2 h atm have been obtained. The pore size of the obtained membranes is 3.7 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, Chem. Soc. Rev. 37, 365 (2008).

    Article  CAS  Google Scholar 

  2. G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, Ind. Eng. Chem. Res. 50, 3798 (2011).

    Article  CAS  Google Scholar 

  3. H. H. Wang, J. T. Jung, J. F. Kim, S. Kim, E. Drioli, and Y. M. Lee, J. Membr. Sci. 574, 44 (2019).

    Article  Google Scholar 

  4. J. U. Garcia, T. Iwama, E. Y. Chan, D. R. Tree, K. T. Delaney, and G. H. Fredrickson, ACS Macro Lett. 9, 1617 (2020).

    Article  CAS  Google Scholar 

  5. T. S. Anokhina, V. Y. Ignatenko, A. V. Kostyuk, S. O. Ilyin, A. V. Volkov, and S. V. Antonov, Membr. Membr. Technol. 2, 149 (2020).

    Article  CAS  Google Scholar 

  6. A. A. Yushkin, M. N. Efimov, A. O. Malakhov, G. P. Karpacheva, G. P. Bondarenko, L. Marbelia, I. F. J. Vankelecom, and A. V. Volkov, React. Funct. Polym. 158, 104793 (2021).

    Article  CAS  Google Scholar 

  7. L. Pérez-Manríquez, J. Aburabi’e, P. Neelakanda, and K. V. Peinemann, React. Funct. Polym. 86, 243 (2015).

    Article  Google Scholar 

  8. A. V. Bildyukevich, T. A. Hliavitskaya, S. A. Pratsenko, and G. B. Melnikova, Membr. Membr. Technol. 3, 24 (2021).

    Article  CAS  Google Scholar 

  9. T. V. Plisko, A. S. Liubimova, A. V. Bildyukevich, A. V. Penkova, M. E. Dmitrenko, V. Y. Mikhailovskii, G. B. Melnikova, K. N. Semenov, N. V. Doroshkevich, and A. I. Kuzminova, J. Membr. Sci. 551, 20 (2018).

    Article  CAS  Google Scholar 

  10. G. Dibrov, G. Kagramanov, V. Sudin, E. Grushevenko, A. Yushkin, and A. Volkov, Membranes 10, 356 (2020).

    Article  CAS  Google Scholar 

  11. W. J. Lau, A. F. Ismail, N. Misdan, and M. A. Kassim, Desalination 287, 190 (2012).

    Article  CAS  Google Scholar 

  12. S. Hermans, H. Marien, C. Van Goethem, and I. F. Vankelecom, Curr. Opin. Chem. Eng. 8, 45 (2015).

    Article  Google Scholar 

  13. D. Li and H. Wang, J. Mater. Chem. 20, 4551 (2010).

    Article  CAS  Google Scholar 

  14. J. Li, M. Hu, H. Pei, X. Ma, F. Yan, D. S. Dlamini, Z. Cui, B. He, J. Li, and H. Matsuyama, J. Membr. Sci. 595, 117547 (2020).

    Article  CAS  Google Scholar 

  15. M. M. Nasef, E. Shamsaei, H. Saidi, A. Ahmad, and K. Z. M. Dahlan, J. Appl. Polym. Sci. 128, 549 (2013).

    Article  CAS  Google Scholar 

  16. Z. Lv, J. Hu, J. Zheng, X. Zhang, and L. Wang, Ind. Eng. Chem. Res. 55, 4726 (2016).

    Article  CAS  Google Scholar 

  17. N. Scharnagl and H. Buschatz, Desalination 139, 191 (2001).

    Article  CAS  Google Scholar 

  18. M. Kumar, R. Shevate, R. Hilke, and K. V. Peinemann, Chem. Eng. J. 301, 306 (2016).

    Article  CAS  Google Scholar 

  19. T. D. Tran, S. Mori, and M. Suzuki, Thin Sol. Film 515 (9), 4148 (2007).

    Article  CAS  Google Scholar 

  20. L. Marbelia, M. Mulier, D. Vandamme, K. Muylaert, A. Szymczyk, and I. F. Vankelecom, Algal Res. 19, 128 (2016).

    Article  Google Scholar 

  21. G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, Ind. Eng. Chem. Res. 50, 3798 (2011).

    Article  CAS  Google Scholar 

  22. E. R. Cornelissen, Van Den Boomgaard T., Strathmann H, Coll. Surf. A 138, 283 (1998).

    Article  CAS  Google Scholar 

  23. H. Lohokare, Y. Bhole, S. Taralkar, and U. Kharul, Desalination 282, 46 (2011).

    Article  CAS  Google Scholar 

  24. C. Klaysom, S. Hermans, A. Gahlaut, S. Van Craenenbroeck, and I. F. Vankelecom, J. Membr. Sci. 445, 25 (2013).

    Article  CAS  Google Scholar 

  25. W. H. Lee, J. Y. Bae, A. Yushkin, M. Efimov, J. T. Jung, A. Volkov, and Y. M. Lee, J. Membr. Sci. 613, 118477 (2020).

    Article  CAS  Google Scholar 

  26. A. A. Yushkin, M. N. Efimov, A. A. Vasilev, V. I. Ivanov, Yu. G. Bogdanova, V. D. Dolzhikova, G. P. Karpacheva, G. N. Bondarenko, and A. V. Volkov, Polym. Sci. A 59, 880 (2017).

    Article  CAS  Google Scholar 

  27. A. A. Yushkin, M. N. Efimov, A. A. Vasilev, Yu. G. Bogdanova, V. D. Dolzhikova, G. P. Karpacheva, and A. V. Volkov, Petr. Chem. 57, 341 (2017).

    Article  CAS  Google Scholar 

  28. C. L. Renschler, A. P. Sylwester, and L. V. Salgado, J. Mater. Res. 4, 452 (1989).

    Article  CAS  Google Scholar 

  29. E. V. Chernikova, Z. A. Poteryaeva, A. V. Shlyakhtin, N. I. Prokopov, A. Yu. Gerval’d, A. Yu. Nikolaev, V. R. Duflot, E. A. Dubova, Yu. V. Kostina, A. S. Rodionov, M. N. Efimov, A. S. Cherevan’, and G. N. Bondarenko, Polym. Sci. B 55, 1 (2013).

    CAS  Google Scholar 

  30. M. Cifuentes-Cabezas, C. Carbonell-Alcaina, M. C. Vincent-Vela, J. A. Mendoza-Roca, S. Álvarez-Blanco, Process Safety Environ. Prot. 149, 724 (2021).

    Article  CAS  Google Scholar 

  31. A. Cassano, C. Conidi, R. Ruby-Figueroa, and R. Castro-Muñoz, Int. J. Mol. Sci. 19, 351 (2018).

    Article  Google Scholar 

  32. A. Giacobbo, M. Oliveira, E. C. Duarte, H. M. Mira, A. M. Bernardes, and M. N. de Pinho, Sep. Sci. Technol. 48, 438 (2013).

    Article  CAS  Google Scholar 

  33. C. Conidi, A. Cassano, F. Caiazzo, and E. Drioli, J. Food Eng. 195, 1 (2017).

    Article  CAS  Google Scholar 

  34. C. Zhao, J. Xue, F. Ran, and S. Sun, Prog. Mater. Sci. 58, 76 (2013).

    Article  CAS  Google Scholar 

  35. D. N. Matveev, K. A. Kutuzov, and V. P. Vasilevsky, Membr. Membr. Technol. 2, 351 (2020).

    Article  CAS  Google Scholar 

  36. A. V. Bildyukevich, T. A. Hliavitskaya, and G. B. Melnikova, Membr. Membr. Technol. 2, 283 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Science Foundation grant no. 18-79-10260, https://rscf.ru/project/18-79-10260/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkin, A.A., Balynin, A.V., Efimov, M.N. et al. Formation of Multilayer Membranes from One Polymer Using IR Treatment. Membr. Membr. Technol. 4, 251–257 (2022). https://doi.org/10.1134/S2517751622040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622040114

Keywords:

Navigation