Skip to main content
Log in

Effects of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Al–Cu–Ti Eutectic Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In the present work, dependences of lamellar spacing (λ), microhardness (HV), and ultimate tensile strength (σUTS) on growth rate (V) were investigated in the Al–Cu–Ti (Al–33 wt % Cu–0.1 wt % Ti) eutectic alloy. For these purposes, the Al–Cu–Ti eutectic alloy was solidified at a constant temperature gradient of 6.45 K mm–1 with a wide range of growth rates, from 8.58 to 2038.65 µm/s. Then, the values of λ, HV, and σUTS were measured on the directionally solidified Al–Cu–Ti specimens. The dependences of λ, HV, and σUTS on V in the Al–Cu–Ti eutectic alloy were experimentally obtained using regression analysis. The results obtained in the present work were compared with the similar experimental results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. J. Polmear, Light Alloys Metallurgy of Light Metals, 3rd ed. (Edward Arnold, London, 1981) pp. 147–157.

    Google Scholar 

  2. J. Auchet and J. L. Bretonet, “Experimental measurement of resistivity of aluminum-based liquid alloys,” Rev. Int. Hautes Temp. Refract. 26, 181–192 (1990).

    CAS  Google Scholar 

  3. D. A. Porter and K. E. Easterlirng, Phase Transformations in Metals and Alloys, 2nd ed. (CRC Press, 1992).

    Book  Google Scholar 

  4. R. Caram and S. Milenkovic, “Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification,” J. Cryst. Growth. 198199, 844–849 (1999).

    Article  Google Scholar 

  5. H. Z. Fu and L. Liu, “Progress of directional solidification in processing of advanced materials,” Mater. Sci. Forum 475479, 607–612 (2005).

    Article  Google Scholar 

  6. H. Jones, Rapid Solidification of Metals and Alloys (The Institution of Metallurgists, Sheffield, 1982).

  7. M. Tassa and J. D. Hunt, “The measurement of Al–Cu dendrite tip and eutectic interface temperatures and their use for predicting the extent of the eutectic range,” J. Cryst. Growth 34, 38–48 (1976).

    Article  CAS  Google Scholar 

  8. R. M. Jordan and J. D. Hunt, “The growth of lamellar eutectic structures in the Pb–Sn and Al–CuAl2 systems,” Mater. Trans. 2, 3401–3410 (1971).

    Article  CAS  Google Scholar 

  9. M. Rhême, F. Gonzales, and M. Rappaz, “Growth directions in directionally solidified Al–Zn and Zn–Al alloys near eutectic composition,” Scr. Mater. 59, 440–443 (2006).

    Article  CAS  Google Scholar 

  10. F. Gonzales and M. Rappaz, “Dendrite growth directions in aluminum-zinc alloys,” Metall. Mater. Trans. A 37, 2797–2806 (2006).

    Article  Google Scholar 

  11. W. R. Osório, J. E. Spinelli, N. Cheung, and A. Garcia, “Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al–10 wt % Sn and Al–20 wt % Zn alloys,” Mater. Sci. Eng., A 420, 179–186 (2006).

    Article  CAS  Google Scholar 

  12. J. De Wilde, L. Froyen, and S. Rex, “Coupled two-phase [α(Al) + θ(Al2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al–Cu–Ag alloys,” Scr. Mater. 51, 533–538 (2004).

    Article  CAS  Google Scholar 

  13. K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).

    CAS  Google Scholar 

  14. V. Datye and J. S. Langer, “Stability of thin lamellar eutectic growth,” Phys. Rev. B 24, 4155–4169 (1981).

    Article  CAS  Google Scholar 

  15. V. Seetharaman and R. Trivedi, “Eutectic growth: Selection of interlamellar spacings,” Metall. Trans. A 19, 2955–2964 (1988).

    Article  Google Scholar 

  16. R. Trivedi, J. T. Mason, J. D. Verhoeven, and W. Kurz, “Eutectic spacing selection in lead-based alloy systems,” Metall. Trans. A 22, 2523–2533 (1991).

    Article  Google Scholar 

  17. V. T. Witusiewicz, U. Hecht, S. Rex, and M. Apel, “In situ observation of microstructure evolution in low-melting Bi–In–Sn alloys by light microscopy,” Acta Mater. 53, 3663–3669 (2005).

    Article  CAS  Google Scholar 

  18. R. Trivedi, P. Magnin, and W. Kurz, “Theory of eutectic growth under rapid solidification conditions,” Acta Metall. 35, 971–980 (1987).

    Article  CAS  Google Scholar 

  19. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, “Solidification microstructures and solid–state parallels: Recent developments, future directions,” Acta Mater. 57, 941–971 (2009).

    Article  CAS  Google Scholar 

  20. S. M. D. Borland and R. Elliott, “Growth temperatures in Al–CuAl2 and Sn-Cd eutectic alloys,” Metall. Trans. A 9, 1063–1067 (1987).

    Article  Google Scholar 

  21. A. Ourdjini, J. Liu, and R. Elliott, “Eutectic spacing selection in Al–Cu system,” Mater. Sci. Technol. 10, 312–318 (1994).

    Article  CAS  Google Scholar 

  22. H. Kaya, E. Çadırlı, and M. Gündüz, “Eutectic growth of unidirectionally solidified bismuth-cadmium alloy,” J. Mater. Process. Technol. 183, 310–320 (2007).

    Article  CAS  Google Scholar 

  23. Y. Kaygısız and N. Maraşlı, “Microstructural, mechanical and electrical characterization of directionally solidified Al–Si–Mg eutectic alloy,” J. Alloys Compd. 618, 197–203 (2015).

    Article  CAS  Google Scholar 

  24. H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı, “Unidirectional solidification of aluminum–nickel eutectic alloy,” Kovove Mater. 48, 291–300 (2010).

    CAS  Google Scholar 

  25. E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, K. Keşlioğlu, S. Akbulut, and Y. Ocak, “Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn–1.2 wt % Cu alloy,” J. Alloys Compd. 470, 150–156 (2009).

    Article  CAS  Google Scholar 

  26. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K, Keşlioğlu, “Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy,” Curr. Appl. Phys. 12, 7–10 (2012).

    Article  Google Scholar 

  27. S. Engin, U. Böyük, and N. Maraşlı, “The effects of microstructure and growth rate on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Ni–Fe alloys,” J. Alloys Compd. 660, 23–31 (2016).

    Article  CAS  Google Scholar 

  28. E. Çadırlı, İ. Yılmazer, M. Şahin, and H. Kaya, “Investigation of the some physical properties of the directionally solidified Al–Cu–Co ternary eutectic alloy,” Trans. Indian Inst. Met. 68, 817–827 (2015).

    Article  CAS  Google Scholar 

  29. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu, “Directional solidification of Al–Cu–Ag alloy,” Appl Phys A 95, 923–932 (2009).

    Article  CAS  Google Scholar 

  30. E. Çadırlı, “Effect of solidification parameters on mechanical properties of directionally solidified Al–Rich Al–Cu alloys,” Met. Mater. Int. 19, 411–422 (2013).

    Article  CAS  Google Scholar 

  31. Y. Kaygısız and N. Maraşlı, “Microstructural, mechanical and electrical characterization of directionally solidified Al–Cu–Mg eutectic alloy,” Phys. Met. Metallogr. 118, 389–398 (2017).

    Article  Google Scholar 

  32. Ü. Bayram and N. Maraşlı, “Influence of growth rate on eutectic spacings, microhardness and ultimate tensile strength in the directionally solidified Al–Cu–Ni eutectic alloy,” Metall. Mater. Trans. B 49, 3293–3305 (2018).

    Article  CAS  Google Scholar 

  33. M. A. Ivanov and A. Yu. Naumuk, “Kinetics of eutectic solidification,” Phys. Met. Metallogr. 115, 471–480 (2014).

    Article  Google Scholar 

  34. E. A. Mohamed and A. Yu. Churyumov, “Investigation of the microstructure and properties of Al–Si–Mg/SiC composite materials produced by solidification under pressure,” Phys. Met. Metallogr. 117, 1054–1060 (2016).

    Article  CAS  Google Scholar 

  35. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Elsevier, Pittsburgh, 2007).

    Book  Google Scholar 

  36. M. Hansen and K. Anderko, Constitutions of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958), pp. 139–141.

    Book  Google Scholar 

  37. X. Lin, W. D. Huang, J. Feng, T. Li, and Y. Zhou, “History-dependent selection of primary cellular/dendritic spacing during unidirectional solidification in aluminum alloys,” Acta Mater. 47, 3271–3280 (1999).

    Article  CAS  Google Scholar 

  38. K. P. Young and D. H. Kirkwood, “The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions,” Metall. Trans. A 6, 197–205 (1975).

    Article  CAS  Google Scholar 

  39. M. A. Mota, A. A. Coelho, J. M. Z. Bejarano, S. Gama, and R. Caram, “Fe–Al–Nb phase diagram investigation and directional growth of the (Fe,Al)2Nb–(Fe, Al,Nb)ss eutectic system,” J. Alloys Compd. 399, 196–201 (2005).

    Article  CAS  Google Scholar 

  40. A. Munitz, “Microstructure of rapidly solidified laser molten AI–4.5 wt % Cu surfaces,” Metall. Trans. B 16, 149–161 (1965).

    Article  Google Scholar 

  41. M. Zimmermann, M. Carrard, and W. Kurz, “Rapid solidification of Al–Cu eutectic alloy by laser remelting,” Acta Metall. 37, 3305–3313 (1989).

    Article  CAS  Google Scholar 

  42. N. Cheung, M. C. F. Ierardi, A. Garcia, and R. Vilar, “The use of artificial intelligence for the optimization of a laser transformation hardening process,” Lasers Eng. 10, 275–291 (2000).

    CAS  Google Scholar 

  43. W. R. Osório and A. Garcia, “Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions,” Mater. Sci. Eng., A 325, 103–111 (2002).

    Article  Google Scholar 

  44. J. Quaresma, C. A. Santos, and A. Garcia, “Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys,” Metall. Trans. A 31, 3167–3178 (2000).

    Article  Google Scholar 

  45. C. Siqueira, N. Cheung, and A. Garcia, “Solidification thermal parameters affecting the columnar-to-equiaxed transition,” Metall. Mater. Trans. A 33, 2107–2118 (2002).

    Article  Google Scholar 

  46. E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Soc. B 64, 747–753 (1951).

    Article  Google Scholar 

  47. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

Download references

Funding

This work was supported by Erciyes University Scientific Research Project Unit under Contract no. FDK-2013–4741. The researchers are grateful to Erciyes University Scientific Research Project Unit for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ümit Bayram, Necmettin Maraşlı Effects of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Al–Cu–Ti Eutectic Alloy. Phys. Metals Metallogr. 121, 382–390 (2020). https://doi.org/10.1134/S0031918X2004016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2004016X

Keywords:

Navigation