Skip to main content
Log in

Investigation of Cyclic Oxidation Behavior of (Cr, Mo, Si)-Containing (α2 + γ) TiAl-Based Alloys Synthesized by ECAS Sintering

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Ti–48Al–2Cr–2Mo–(0 and 0.5 at %) Si intermetallic alloys were synthesized by electric current- assisted sintering (ECAS). Microstructures of the alloys were characterized using scanning electron microscopy (SEM), electron diffraction spectroscopy (EDS), and X-ray diffraction (XRD) methods of analysis. It was found that the microstructures of the produced alloys consist of α2-Ti3Al and γ-TiAl phases. The cycle oxidation behaviors of the alloys were carried out between 700 and 900°C temperatures for 180 h in air. The oxide scale has comprised the TiO2 and Al2O3 mixture layer, intermediate Al2O3 layer, and outermost TiO2 layer. The oxidation rate constants and activation energies of the alloys were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Ye, H. Hao, W. Mo, K. Yu, L. Litao, C. Deng, and P. Yu, “Effects of cold compacting pressure on the expansion behavior of Ti-48Al during sintering,” J. Alloy Compd. 673, 399–404 (2016).

    Article  CAS  Google Scholar 

  2. Z. Zhang, M. Xu, C. Z. Zhang, J. C. Han, Y. F. Chen, F. T. Kong, and Y. Y. Chen, “Microstructure homogeneity and mechanical properties of large-size as-cast high Nb containing TiAl alloy ingot,” Phys. Met. Metallogr. 119, 953–960 (2018).

    Article  Google Scholar 

  3. Y. Garip and O. Ozdemir, “Comparative study of the oxidation and hot corrosion behaviors of TiAl–Cr intermetallic alloy produced by electric current activated sintering,” J. Alloy Compd. 780, 364–377 (2019).

    Article  CAS  Google Scholar 

  4. A. Banu, M. Marcu, S. Petrescu, N. Ionescu, and A. Paraschiv, “Effect of niobium alloying level on the oxidation behavior of titanium aluminides at 850°C,” Int. J. Miner., Metall. Mater. 23, 1452–1457 (2016).

    Article  CAS  Google Scholar 

  5. C. Liu, X. Lu, F. Yang, W. Xu, Z. Wang, and X. Qu, “Metal injection moulding of high Nb-containing TiAl alloy and its oxidation behaviour at 900°C,” Metals 8, 1–14 (2018).

    Google Scholar 

  6. A. Brotzu, F. Felli, and D. Pilone, “Effect of alloying elements on the behaviour of TiAl-based alloys,” Intermetallics 54, 176–180 (2014).

    Article  CAS  Google Scholar 

  7. D. J. Kim, D. Y. Seo, H. Saari, T. Sawatzky, and Y.‑W. Kim, “Isothermal oxidation behavior of powder metallurgy beta gamma TiAl–2Nb–2Mo alloy,” Intermetallics 19, 1509–1516 (2011).

    Article  CAS  Google Scholar 

  8. S. Grasso, Y. Sakka, and G. Maizza, “Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008,” Sci. Technol. Adv. Mater. 10, 1–24 (2009).

    Article  Google Scholar 

  9. Y. Garip and O. Ozdemir, “Hot corrosion behavior of Ti–48Al and Ti–48Al–2Cr intermetallic alloys produced by electric current activated sintering,” Metall. Mater. Trans. A 49, 2455–2462 (2018).

    Article  CAS  Google Scholar 

  10. R. Orru, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63, 127–287 (2009).

    Article  Google Scholar 

  11. D.-B. Lee, “Effect of Cr, Nb, Mn, V, W and Si on high temperature oxidation of TiAl alloys,” Met. Mater. Int. 11, 141–147 (2005).

    Article  CAS  Google Scholar 

  12. Y. Shida and H. Anada, “The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air,” Oxid. Met. 45, 197–219 (1996).

    Article  CAS  Google Scholar 

  13. H. Li, Q. Cao, and Z. Zhu, “Oxidation behaviour of Super 304H stainless steel in supercritical water,” Corros. Eng., Sci. Technol. 53, 293–301 (2008).

    Article  Google Scholar 

  14. E. Godlewska, M. Mitoraj, F. Devred, and B. E. Nieuwenhuys, “Reactivity of a Ti–45.9Al–8Nb alloy in air at 700–900°C,” J. Therm. Anal. Calorim. 88, 225–230 (2007).

    Article  CAS  Google Scholar 

  15. D. Y. Seo, T. D. Nguyen, and D. B. Lee, “Oxidation of powder metallurgy (PM) Ti–48% Al–2% Cr–2% Nb–(0–1%) W alloys between 800 and 1000oC in air,” Oxid. Met. 74, 145–156 (2010).

    Article  CAS  Google Scholar 

  16. K. Kothari, R. Radhakrishnan, and N. M. Wereley, “Advances in gamma titanium aluminides and their manufacturing techniques,” Prog. Aeronaut. Sci. 55, 1–16 (2012).

    Article  Google Scholar 

  17. X. Liu, K. You, Z. Wang, M. Zhang, and Z. He, “Effect of Mo-alloyed layer on oxidation behavior of TiAl-based alloy,” Vacuum 89, 209–214 (2013).

    Article  CAS  Google Scholar 

  18. D. J. Kim, D. Y. Seo, Q. Yang, H. Saari, T. Sawatzky, and Y.-W. Kim, “Isothermal oxidation behaviour of beta gamma powder metallurgy TiAl–4Nb–3Mn alloys,” Can. Metall. Q. 50, 416–424 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ozdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garip, Y., Ozdemir, O. Investigation of Cyclic Oxidation Behavior of (Cr, Mo, Si)-Containing (α2 + γ) TiAl-Based Alloys Synthesized by ECAS Sintering. Phys. Metals Metallogr. 121, 322–329 (2020). https://doi.org/10.1134/S0031918X20040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20040043

Keywords:

Navigation