Skip to main content
Log in

Quantum yield and rate constant of the singlet 1Δ g oxygen luminescence in an aqueous medium in the presence of nanoscale inhomogeneities

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The quantum yields and lifetimes of photosensitized luminescence of the 1Δ g state of singlet oxygen in an aquatic media with a controlled concentration of dielectric anisotropy centers (polyethylene glycol) have been measured using the methods of laser fluorometry. It is established that the quantum yield and the rate constant (k r ) of the a 1Δ g X 3Σ - g luminescence of 1O2 increase as the polymer concentration increases. The effect is analyzed within a general approach involving a relationship between kr and dielectric properties of the medium and is explained by the increased density of photon states and the local field factor in the space around O2(а 1Δ g ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herzberg, Molecular Spectra and Molecular Structure, I. Diatomic Molecules (New York, 1939; Mir, Moscow, 1949).

    Google Scholar 

  2. A. A. Krasnovskii, Itogi Nauki Tekh., Sovrem. Probl. Lazer. Fiz., p. 63 (1990).

    Google Scholar 

  3. Cl. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003).

    Article  Google Scholar 

  4. B. F. Minaev, Russ. Chem. Rev. 76, 989 (2007).

    Article  Google Scholar 

  5. K. I. Salokhiddinov, B. M. Dzhagarov, and G. D. Egorova, in Proceedings of the All-Union Workshop on Molecular Luminescence and Its Applications, Kharkov, Oct. 11–15, 1982 (Kharkov, 1982), p. 220.

    Google Scholar 

  6. K. I. Salokhiddinov, B. M. Dzhagarov, and G. D. Egorova, Opt. Spectrosc. 55, 40 (1983).

    ADS  Google Scholar 

  7. M. A. J. Rodgers and P. T. Snowden, J. Am. Chem. Soc. 104, 5541 (1982).

    Article  Google Scholar 

  8. A. A. Krasnovskii, S. Yu. Egorov, O. V. Nazarova, E. I. Yartsev, and G. V. Ponomarev, Biofizika 32, 982 (1987).

    Google Scholar 

  9. M. Hild and R. Schmidt, J. Phys. Chem. A 103, 6091 (1999).

    Article  Google Scholar 

  10. T. D. Poulsen, P. R. Ogilby, and K. V. Mikkelsen, J. Phys. Chem. A 102, 9829 (1998).

    Article  Google Scholar 

  11. R. D. Scurlock and P. Ogilby, J. Phys. Chem. 91, 4599 (1987).

    Article  Google Scholar 

  12. B. M. Dzhagarov, E. S. Jarnikova, A. S. Stasheuski, V. A. Galievsky, and M. V. Parkhats, J. Appl. Spectrosc. 79, 861 (2013).

    Article  ADS  Google Scholar 

  13. B. M. Dzhagarov, E. S. Jarnikova, M. V. Parkhats, and A. S. Stasheuski, Opt. Spectrosc. 116, 1003 (2014).

    Article  Google Scholar 

  14. J. K. Armstrong, R. B. Wenhy, H. J. Meiselman, and T. C. Fisher, Biophys. J. 87, 4259 (2004).

    Article  Google Scholar 

  15. M. V. Parkhats, V. A. Galievskii, E. S. Zharnikova, V. N. Knyukshto, S. V. Lepeshkevich, A. S. Stashevskii, T. V. Trukhacheva, and B. M. Dzhagarov, J. Appl. Spectrosc. 78, 278 (2011).

    Article  ADS  Google Scholar 

  16. J. W. Snyder, E. Skovsen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, Phys. Chem. Chem. Phys. 8, 4280 (2006).

    Article  Google Scholar 

  17. M. J. Paterson, O. Christiansen, F. Jensen, and P. R. Ogilby, Photochem. Photobiol. 82, 1136 (2006).

    Article  Google Scholar 

  18. M. V. Parkhats, V. A. Galievsky, A. S. Stashevsky, T. V. Trukhacheva, and B. M. Dzhagarov, Opt. Spectrosc. 107, 974 (2009).

    Article  ADS  Google Scholar 

  19. H. A. Isakau, M. V. Parkhats, V. N. Knyukshto, B.M. Dzhagarov, E. P. Petrov, and P. T. Petrov, J. Photochem. Photobiol. B 92, 165 (2008).

  20. V. A. Galievsky, A. S. Stasheuski, V. V. Kiselyov, A. I. Shabusov, M. V. Belkov, and B. M. Dzhagarov, Instrum. Exp. Tech. 53, 568 (2010).

    Article  Google Scholar 

  21. B. V. Ioffe, Refractometric Methods in Chemistry (Khimiya, Leningrad, 1980) [in Russian].

    Google Scholar 

  22. O. Shimizu, J. Watanabe, K. Imakubo, and S. Naito, Chem. Lett., 67 (1999).

    Google Scholar 

  23. J. Baier, T. Fuss, C. Pollman, Ch. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, and W. Baumler, J. Photochem. Photobiol. B 87, 163 (2007).

    Article  Google Scholar 

  24. S. V. Lepeshkevich, S. N. Gilevich, M. V. Parkhats, and B. M. Dzhagarov, Biochim. Biophys. Acta 1864, 1110 (2016).

    Article  Google Scholar 

  25. E. S. Zharnikova, Extended Abstract of Cand. Sci. Dissertation (Minsk, 2015).

    Google Scholar 

  26. D. Toptygin, J. Fluoresc. 13, 201 (2003).

    Article  Google Scholar 

  27. D. V. Kuznetsov, M. G. Gladush, and Vl. K. Roerich, J. Exp. Theor. Phys. 113, 647 (2011).

    Article  ADS  Google Scholar 

  28. G. P. Mikhailov and B. I. Sazhin, Russ. Chem. Rev. 29, 410 (1960).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Dzhagarov.

Additional information

Original Russian Text © E.S. Jarnikova, M.V. Parkhats, A.S. Stasheuski, S.V. Lepeshkevich, B.M. Dzhagarov, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 4, pp. 616–621.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarnikova, E.S., Parkhats, M.V., Stasheuski, A.S. et al. Quantum yield and rate constant of the singlet 1Δ g oxygen luminescence in an aqueous medium in the presence of nanoscale inhomogeneities. Opt. Spectrosc. 122, 596–601 (2017). https://doi.org/10.1134/S0030400X17040221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17040221

Navigation