Skip to main content
Log in

The cause of cancer mutations: Improvable bad life or inevitable stochastic replication errors?

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Despite substantial progress in understanding the mechanisms of carcinogenesis and fighting oncology diseases, cancer mortality remains rather high. Therefore, there is a striving to reduce this mortality to the level determined by endogenous biological factors. The review analyzes the mutations that lead to cell malignant transformation and describes the contribution that self-renewal of adult tissues makes to tumorigenesis. Cancer progression is considered as a development of a complicated system where cells mutate, evolve, and are subject to selection. Cancer paradoxes are described in conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASC:

adult stem cell

CCO:

cancer cell of origin

BC:

breast cancer

CML:

chronic myeloid leukemia

CIN:

chromosome instability

GIN:

genome instability

References

  1. McIntosh H. 1996. 25 years ahead: Will cancer be a “background-noise kind of disease”? J. Natl. Cancer Inst. 88, 1794–1798.

    Article  Google Scholar 

  2. Ledford H. 2015. End of cancer-genome project prompts rethink. Nature. 517, 128–129.

    Article  CAS  PubMed  Google Scholar 

  3. Sverdlov E.D. 2014. Systemic biology and personalized medicine: To be or not to be? Ross. Fiziol. Zh. im. I.I. Sechenova. 100, 505–541.

    CAS  Google Scholar 

  4. White A.C., Lowry W.E. 2015. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol. 25, 11–20.

    Article  CAS  PubMed  Google Scholar 

  5. Sverdlov E.D., Pleshkan V.V., Alekseenko I.V., Vinogradova T.V., Kopantsev E.P., Didych D.A. 2015. Adult stem cells and other cancer residents. Mol. Genet. Mikrobiol. Virusol. 33, 3–8.

    Google Scholar 

  6. Visvader J.E. 2011. Cells of origin in cancer. Nature. 469, 314–322.

    Article  CAS  PubMed  Google Scholar 

  7. Sell S. 2010. On the stem cell origin of cancer. Am. J. Pathol. 176, 2584–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blanpain C. 2013. Tracing the cellular origin of cancer. Nat. Cell Biol. 15, 126–134.

    Article  CAS  PubMed  Google Scholar 

  9. Tomasetti C., Vogelstein B. 2015. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 347, 78–81.

    CAS  PubMed  Google Scholar 

  10. Shevde N. 2012. Stem cells: flexible friends. Nature. 483, S22–S26.

    Article  CAS  PubMed  Google Scholar 

  11. Slack J.M. 2008. Origin of stem cells in organogenesis. Science. 322, 1498–1501.

    Article  CAS  PubMed  Google Scholar 

  12. Tajbakhsh S. 2009. Stem cell: What’s in a name. Nat. Rep. Stem Cells. doi 10.1038/stemcells.2009.90

    Google Scholar 

  13. O’Connor M.L., Xiang D., Shigdar S., Macdonald J., Li Y., Wang T., Pu C., Wang Z., Qiao L., Duan W. 2014. Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett. 344, 180–187.

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs E. 2009. The tortoise and the hair: Slow-cycling cells in the stem cell race. Cell. 137, 811–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferraro F., Celso C.L., Scadden D. 2010. Adult stem cels and their niches. Adv. Exp. Med. Biol. 695, 155–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Snippert H.J., Clevers H. 2011. Tracking adult stem cells. EMBO Rep. 12, 113–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuchs E., Chen T. 2013. A matter of life and death: Self-renewal in stem cells. EMBO Rep. 14, 39–48.

    Article  CAS  PubMed  Google Scholar 

  18. Simons B.D., Clevers H. 2011. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 145, 851–862.

    Article  CAS  PubMed  Google Scholar 

  19. Scadden D.T. 2014. Nice neighborhood: Emerging concepts of the stem cell niche. Cell. 157, 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakaki-Yumoto M., Katsuno Y., Derynck R. 2013. TGF-beta family signaling in stem cells. Biochim. Biophys. Acta. 1830, 2280–2296.

    Article  CAS  PubMed  Google Scholar 

  21. Tomasetti C., Vogelstein B. 2015. Cancer risk: Role of environment-response. Science. 347, 729–731.

    Article  CAS  PubMed  Google Scholar 

  22. Tomasetti C., Vogelstein B. 2015. Musings on the theory that variation in cancer risk among tissues can be explained by the number of divisions of normal stem cells. arXiv:1501.05035. https://arxiv.org/ftp/arxiv/papers/1501/1501.05035.pdf.

    Google Scholar 

  23. Fernandez L.C., Torres M., Real F.X. 2016. Somatic mosaicism: On the road to cancer. Nat. Rev. Cancer. 16, 43–55.

    Article  CAS  PubMed  Google Scholar 

  24. Cao S., Zhang C., Xu Y. 2015. Somatic mutations may not be the primary drivers of cancer formation. Int. J. Cancer. 137, 2762–2765.

    Article  CAS  PubMed  Google Scholar 

  25. Wu S., Powers S., Zhu W., Hannun Y.A. 2016. Substantial contribution of extrinsic risk factors to cancer development. Nature. 529, 43–47.

    Article  CAS  PubMed  Google Scholar 

  26. Greaves M. 2015. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rozhok A.I., DeGregori J. 2015. Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. Proc. Natl. Acad. Sci. U. S. A. 112, 8914–8921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hao D., Wang L., Di L.J. 2016. Distinct mutation accumulation rates among tissues determine the variation in cancer risk. Sci. Rep. 6, 19458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greaves M., Maley C.C. 2012. Clonal evolution in cancer. Nature. 481, 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding L., Ellis M.J., Li S., Larson D.E., Chen K., Wallis J.W., Harris C.C., McLellan M.D., Fulton R.S., Fulton L.L., Abbott R.M., Hoog J., Dooling D.J., Koboldt D.C., Schmidt H., et al. 2010. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 464, 999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Campbell L.L., Polyak K. 2007. Breast tumor heterogeneity: Cancer stem cells or clonal evolution? Cell Cycle. 6, 2332–2338.

  32. Marusyk A., Polyak K. 2013. Cancer cell phenotypes, in fifty shades of grey. Science. 339, 528–529.

    Article  CAS  PubMed  Google Scholar 

  33. Navin N., Kendall J., Troge J., Andrews P., Rodgers L., McIndoo J., Cook K., Stepansky A., Levy D., Esposito D., Muthuswamy L., Krasnitz A., McCombie W.R., Hicks J., Wigler M. 2011. Tumour evolution inferred by single-cell sequencing. Nature. 472, 90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swanton C., Burrell R.A., Futreal P.A. 2011. Breast cancer genome heterogeneity: A challenge to personalised medicine? Breast Cancer Res. 13, 104.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Islam F., Gopalan V., Smith R.A., Lam A.K. 2015. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp. Cell Res. 335, 135–147.

    Article  CAS  PubMed  Google Scholar 

  36. Shah M., Allegrucci C. 2012. Keeping an open mind: Highlights and controversies of the breast cancer stem cell theory. Breast Cancer (Dove Med. Press). 4, 155–166.

    PubMed  PubMed Central  Google Scholar 

  37. Kreso A., Dick J.E. 2014. Evolution of the cancer stem cell model. Cell Stem Cell. 14, 275–291.

    Article  CAS  PubMed  Google Scholar 

  38. Ma Q.C., Ennis C.A., Aparicio S. 2012. Opening Pandora’s box: The new biology of driver mutations and clonal evolution in cancer as revealed by next generation sequencing. Curr. Opin. Genet. Dev. 22, 3–9.

    Article  CAS  PubMed  Google Scholar 

  39. Vinogradova T.V., Chernov I.P., Monastyrskaya G.S., Kondratieva L.G., Sverdlov E.D. 2015. Cancer stem cells: Plasticity against therapy. Acta Naturae. 7, 53–63.

    Google Scholar 

  40. Vogelstein B., Kinzler K.W. 2015. The path to cancer: Three strikes and you’re out. N. Engl. J. Med. 373, 1895–1898.

    Article  PubMed  Google Scholar 

  41. Tomasetti C., Vogelstein B., Parmigiani G. 2013. Half or more of the somatic mutations in cancers of selfrenewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. U. S. A. 110, 1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A., Kinzler K.W. 2013. Cancer genome landscapes. Science. 339, 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hainaut P., Plymoth A. 2015. Editorial: from cancer genotypes to phenotypes: A never-ending complexity. Curr. Opin. Oncol. 28, 50–51.

    Article  Google Scholar 

  44. Tomasetti C., Marchionni L., Nowak M.A., Parmigiani G., Vogelstein B. 2015. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc. Natl. Acad. Sci. U. S. A. 112, 118–123.

    Article  CAS  PubMed  Google Scholar 

  45. Nordling C.O. 1953. A new theory on cancer-inducing mechanism. Br. J. Cancer. 7, 68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Armitage P., Doll R. 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer. 8, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martincorena I., Campbell P.J. 2015. Somatic mutation in cancer and normal cells. Science. 349, 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D., Weinberg R.A. 2011. Hallmarks of cancer: The next generation. Cell. 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  49. Greaves M. 2015. How many mutations does it take? https://thedarwincancerblog.com/2015/10/26/howmany-mutations-does-it-take/.

    Google Scholar 

  50. Sverdlov E.D. 2011. Genetic surgery: A right strategy to attack cancer. Curr. Gene Ther. 11, 501–531.

    Article  CAS  PubMed  Google Scholar 

  51. Gerlinger M., McGranahan N., Dewhurst S.M., Burrell R.A., Tomlinson I., Swanton C. 2014. Cancer: Evolution within a lifetime. Annu. Rev. Genet. 48, 215–236.

    Article  CAS  PubMed  Google Scholar 

  52. Horn H., Michael S.L., Hu J.X., Worstell E., Ilic N., Shrestha Y., Kim E., Kamburov A., Kashani A., Hahn W.C., Boehm J.S., Getz G., Lage K. 2015. A comparative analysis of network mutation burdens across 21 tumor types augments discovery from cancer genomes. bioRxiv. http://dx.doi.org/10.1101/025445.

    Book  Google Scholar 

  53. Mallick P. 2015. Complexity and information: Cancer as a multi-scale complex adaptive system. In: Physical Sciences and Engineering Advances in Life Sciences and Oncology. Eds. Janmey P., Fletcher D., Gerecht S., Levine R., Mallick P., McCarty O., Munn L., Reinhart-King C. Springer Int. Publ., pp. 5–29.

    Google Scholar 

  54. Hanahan D., Weinberg R.A. 2000. The hallmarks of cancer. Cell. 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  55. Wood L.D., Parsons D.W., Jones S., Lin J., Sjoblom T., Leary R.J., Shen D., Boca S.M., Barber T., Ptak J., Silliman N., Szabo S., Dezso Z., Ustyanksky V., Nikolskaya T., et al. 2007. The genomic landscapes of human breast and colorectal cancers. Science. 318, 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  56. Alison M.R., Lim S.M., Nicholson L.J. 2011. Cancer stem cells: Problems for therapy? J. Pathol. 223, 147–161.

    Article  CAS  Google Scholar 

  57. Alison M.R., Lin W.R., Lim S.M., Nicholson L.J. 2012. Cancer stem cells: In the line of fire. Cancer Treat. Rev. 38, 589–598.

    Article  CAS  PubMed  Google Scholar 

  58. Sverdlov E.D. 2009. Not gene thrapy, but genetic surgery the right strategy to attack cancer. Mol. Gen. Microbiol. Virol. 24, 93–113.

    Article  Google Scholar 

  59. Sverdlov E.D., Mineev K. 2013. Mutation rate in stem cells: an underestimated barrier on the way to therapy. Trends Mol. Med. 19, 273–280.

    Article  CAS  PubMed  Google Scholar 

  60. Giam M., Rancati G. 2015. Aneuploidy and chromosomal instability in cancer: A jackpot to chaos. Cell Div. 10, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Willis N.A., Rass E., Scully R. 2015. Deciphering the code of the cancer genome: Mechanisms of chromosome rearrangement. Trends Cancer. 1, 217–230.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dewhurst S.M., McGranahan N., Burrell R.A., Rowan A.J., Gronroos E., Endesfelder D., Joshi T., Mouradov D., Gibbs P., Ward R.L., Hawkins N.J., Szallasi Z., Sieber O.M., Swanton C. 2014. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yuen K.W.Y. 2010. Chromosome instability (CIN), aneuploidy and cancer. eLS. doi 10.1002/9780470015902.a0022413

  64. Storchova Z. 2012. The causes and consequences of aneuploidy in eukaryotic cells, aneuploidy in health and disease. In: Aneuploidy in Health and Disease. Ed. Storchova Z. InTech: Croatia. pp. 3–22. http://www.intechopen.com/books/aneuploidy-inhealth-and-disease/the-effect-of-aneuploidy-onphysiology-ofeukaryotic-cell.

    Chapter  Google Scholar 

  65. Hatch E.M., Hetzer M.W. 2015. Chromothripsis. Curr. Biol. 25, R397–399.

    Article  CAS  PubMed  Google Scholar 

  66. Leibowitz M.L., Zhang C.Z., Pellman D. 2015. Chromothripsis: A new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49, 183–211.

    Article  CAS  PubMed  Google Scholar 

  67. Swanton C., McGranahan N., Starrett G.J., Harris R.S. 2015. APOBEC enzymes: Mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitelman F., Johansson B., Mertens F. 2007. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer. 7, 233–245.

    Article  CAS  PubMed  Google Scholar 

  69. Lilljebjorn H., Soneson C., Andersson A., Heldrup J., Behrendtz M., Kawamata N., Ogawa S., Koeffler H.P., Mitelman F., Johansson B., Fontes M., Fioretos T. 2010. The correlation pattern of acquired copy number changes in 164 ETV6/RUNX1-positive childhood acute lymphoblastic leukemias. Hum. Mol. Genet. 19, 3150–3158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. de The H., Chen Z. 2010. Acute promyelocytic leukaemia: Novel insights into the mechanisms of cure. Nat. Rev. Cancer. 10, 775–783.

    Article  PubMed  CAS  Google Scholar 

  71. Melo J.V., Barnes D.J. 2007. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer. 7, 441–453.

    Article  CAS  PubMed  Google Scholar 

  72. Morrison W.B. 2010. Cancer chemotherapy: An annotated history. J. Vet. Intern. Med. 24, 1249–1262.

    Article  CAS  PubMed  Google Scholar 

  73. Quintas-Cardama A., Cortes J. 2009. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 113, 1619–1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bixby D., Talpaz M. 2010. Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia. 25, 7–22.

    Article  PubMed  CAS  Google Scholar 

  75. Riggi N., Cironi L., Provero P., Suva M.L., Kaloulis K., Garcia-Echeverria C., Hoffmann F., Trumpp A., Stamenkovic I. 2005. Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res. 65, 11459–11468.

    Article  CAS  PubMed  Google Scholar 

  76. Watson I.R., Takahashi K., Futreal P.A., Chin L. 2013. Emerging patterns of somatic mutations in cancer. Nat. Rev. Genet. 14, 703–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barber L.J., Davies M.N., Gerlinger M. 2015. Dissecting cancer evolution at the macro-heterogeneity and micro-heterogeneity scale. Curr. Opin. Genet. Dev. 30, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roberts S.A., Gordenin D.A. 2014. Hypermutation in human cancer genomes: Footprints and mechanisms. Nat. Rev. Cancer. 14, 786–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beerenwinkel N., Antal T., Dingli D., Traulsen A., Kinzler K.W., Velculescu V.E., Vogelstein B., Nowak M.A. 2007. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3, e225.

    Article  CAS  Google Scholar 

  80. Tomlinson I., Sasieni P., Bodmer W. 2002. How many mutations in a cancer? Am. J. Pathol. 160, 755–758.

    Google Scholar 

  81. Bielas J.H., Loeb K.R., Rubin B.P., True L.D., Loeb L.A. 2006. Human cancers express a mutator phenotype. Proc. Natl. Acad. Sci. U. S. A. 103, 18238–18242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Campbell C.D., Chong J.X., Malig M., Ko A., Dumont B.L., Han L., Vives L., O’Roak B.J., Sudmant P.H., Shendure J., Abney M., Ober C., Eichler E.E. 2012. Estimating the human mutation rate using autozygosity in a founder population. Nat. Genet. 44, 1277–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roberts S.A., Gordenin D.A. 2014. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays. doi 10.1002/bies.201300140

    Google Scholar 

  84. Beckman R.A., Loeb L.A. 2006. Efficiency of carcinogenesis with and without a mutator mutation. Proc. Natl. Acad. Sci. U. S. A. 103, 14140–14145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sieber O., Heinimann K., Tomlinson I. 2005. Genomic stability and tumorigenesis. Semin. Cancer Biol. 15, 61–66.

    Article  CAS  PubMed  Google Scholar 

  86. Sohl C.D., Ray S., Sweasy J.B. 2015. Pools and Pols: Mechanism of a mutator phenotype. Proc. Natl. Acad. Sci. U. S. A. 112, 5864–5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heitzer E., Tomlinson I. 2014. Replicative DNA polymerase mutations in cancer. Curr. Opin. Genet. Dev. 24, 107–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schlesner M., Eils R. 2015. Hypermutation takes the driver’s seat. Genome Med. 7, 31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Shlien A., Campbell B.B., de Borja R., Alexandrov L.B., Merico D., Wedge D., van Loo P., Tarpey P.S., Coupland P., Behjati S., Pollett A., Lipman T., Heidari A., Deshmukh S., Avitzur N., et al. 2015. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262.

    Article  CAS  PubMed  Google Scholar 

  90. Roberts S.A., Lawrence M.S., Klimczak L.J., Grimm S.A., Fargo D., Stojanov P., Kiezun A., Kryukov G.V., Carter S.L., Saksena G., Harris S., Shah R.R., Resnick M.A., Getz G., Gordenin D.A. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kazanov M.D., Roberts S.A., Polak P., Stamatoyannopoulos J., Klimczak L.J., Gordenin D.A., Sunyaev S.R. 2015. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions. Cell Rep. 13, 1103–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaszczur M., Bertram J.G., Pham P., Scharff M.D., Goodman M.F. 2013. AID and Apobec3G haphazard deamination and mutational diversity. Cell. Mol. Life Sci. 70, 3089–3108.

    Article  CAS  PubMed  Google Scholar 

  93. Seplyarskiy V.B., Soldatov R.A., Popadin K.Y., Antonarakis S.E., Bazykin G.A., Nikolaev S.I. 2016. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res. 26, 174–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Papavasiliou F.N., Schatz D.G. 2002. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell. 109 (Suppl.), S35–S44.

    Article  CAS  PubMed  Google Scholar 

  95. Rebhandl S., Huemer M., Greil R., Geisberger R. 2015. AID/APOBEC deaminases and cancer. Oncoscience. 2, 320–333.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chan K., Gordenin D.A. 2015. Clusters of multiple mutations: Incidence and molecular mechanisms. Annu. Rev. Genet. 49, 243–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Makova K.D., Hardison R.C. 2015. The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Villanueva M.T. 2015. Epigenetics: Chromatin marks the spot. Nat. Rev. Cancer. 15, 196–197.

    Article  CAS  PubMed  Google Scholar 

  99. Polak P., Karlic R., Koren A., Thurman R., Sandstrom R., Lawrence M.S., Reynolds A., Rynes E., Vlahovicek K., Stamatoyannopoulos J.A., Sunyaev S.R. 2015. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature. 518, 360–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Easwaran H., Tsai H.C., Baylin S.B. 2014. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell. 54, 716–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang S. 2013. Genetic and non-genetic instability in tumor progression: Link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metast. Rev. 32, 423–448.

    Article  CAS  Google Scholar 

  102. Suva M.L., Riggi N., Bernstein B.E. 2013. Epigenetic reprogramming in cancer. Science. 339, 1567–1570.

    Article  CAS  PubMed  Google Scholar 

  103. Beckage B., Gross L., Kauffman S. 2011. The limits to prediction in ecological systems. Ecosphere. 2, 125.

    Article  Google Scholar 

  104. Hart J.R., Zhang Y., Liao L., Ueno L., Du L., Jonkers M., Yates J.R., Vogt P.K. 2015. The butterfly effect in cancer: A single base mutation can remodel the cell. Proc. Natl. Acad. Sci. U. S. A. 112, 1131–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee R.S., Stewart C., Carter S.L., Ambrogio L., Cibulskis K., Sougnez C., Lawrence M.S., Auclair D., Mora J., Golub T.R., Biegel J.A., Getz G., Roberts C.W. 2012. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Greaves M. 2007. Darwinian medicine: A case for cancer. Nat. Rev. Cancer. 7, 213–221.

    Article  CAS  PubMed  Google Scholar 

  107. Pawelec G., Bohr V., Campisi J. 2009. Special issue on cancer and ageing. Mech. Ageing Dev. 130, 1–2.

    Article  CAS  PubMed  Google Scholar 

  108. McAloose D., Newton A.L. 2009. Wildlife cancer: A conservation perspective. Nat. Rev. Cancer. 9, 517–526.

    Article  CAS  PubMed  Google Scholar 

  109. Clevers H. 2005. Stem cells, asymmetric division and cancer. Nat. Genet. 37, 1027–1028.

    Article  CAS  PubMed  Google Scholar 

  110. Pinkston J.M., Garigan D., Hansen M., Kenyon C. 2006. Mutations that increase the life span of C. elegans inhibit tumor growth. Science. 313, 971–975.

    CAS  PubMed  Google Scholar 

  111. Campisi J. 2003. Cancer and ageing: Rival demons? Nat. Rev. Cancer. 3, 339–349.

    Article  CAS  PubMed  Google Scholar 

  112. Fletcher O., Houlston R.S. 2010. Architecture of inherited susceptibility to common cancer. Nat. Rev. Cancer. 10, 353–361.

    Article  CAS  PubMed  Google Scholar 

  113. Bissell M.J., Hines W.C. 2011. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peto R. 2015. Quantitative implications of the approximate irrelevance of mammalian body size and lifespan to lifelong cancer risk. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, pii: 20150198.

    Article  Google Scholar 

  115. Abegglen L.M., Caulin A.F., Chan A., Lee K., Robinson R., Campbell M.S., Kiso W.K., Schmitt D.L., Waddell P.J., Bhaskara S., Jensen S.T., Maley C.C., Schiffman J.D. 2015. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860.

    Article  CAS  Google Scholar 

  116. Roche B., Sprouffske K., Hbid H., Misse D., Thomas F. 2013. Peto’s paradox revisited: Theoretical evolutionary dynamics of cancer in wild populations. Evol. Appl. 6, 109–116.

    Article  PubMed  Google Scholar 

  117. Greaves M., Ermini L. 2015. Evolutionary adaptations to risk of cancer: Evidence from cancer resistance in elephants. JAMA. 314, 1806–1807.

    Article  CAS  PubMed  Google Scholar 

  118. Peto R., Roe F.J., Lee P.N., Levy L., Clack J. 1975. Cancer and ageing in mice and men. Br. J. Cancer. 32, 411–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim E.B., Fang X., Fushan A.A., Huang Z., Lobanov A.V., Han L., Marino S.M., Sun X., Turanov A.A., Yang P., Yim S.H., Zhao X., Kasaikina M.V., Stoletzki N., Peng C., et al. 2011. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature. 479, 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Keane M., Semeiks J., Webb A.E., Li Y.I., Quesada V., Craig T., Madsen L.B., van Dam S., Brawand D., Marques P.I., Michalak P., Kang L., Bhak J., Yim H.S., Grishin N.V., et al. 2015. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 10, 112–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Olson M.V., Varki A. 2003. Sequencing the chimpanzee genome: Insights into human evolution and disease. Nat. Rev. Genet. 4, 20–28.

    Article  CAS  PubMed  Google Scholar 

  122. Merlo L.M., Pepper J.W., Reid B.J., Maley C.C. 2006. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer. 6, 924–935.

    Article  CAS  PubMed  Google Scholar 

  123. Bode A.M., Dong Z. 2009. Cancer prevention research: Then and now. Nat. Rev. Cancer. 9, 508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Alekseenko.

Additional information

Original Russian Text © I.V. Alekseenko, A.I. Kuzmich, V.V. Pleshkan, D.V. Tyulkina, M.V. Zinovyeva, M.B. Kostina, E.D. Sverdlov, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 6, pp. 906–921.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, I.V., Kuzmich, A.I., Pleshkan, V.V. et al. The cause of cancer mutations: Improvable bad life or inevitable stochastic replication errors?. Mol Biol 50, 799–811 (2016). https://doi.org/10.1134/S0026893316060030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316060030

Keywords

Navigation