Skip to main content
Log in

Modern methods for isolation, purification, and cultivation of soil cyanobacteria

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Up-to-date methods for isolation of cyanobacteria from soil samples, removal of accompanying microflora, obtaining axenic strains, and conditions and media for subsequent cultivation are reviewed. Characterization of soil as a specific habitat for cyanobacteria is provided. Comparative analysis of pH and elemental composition of the liquid phase of most soil types with the media for cultivating cyanobacteria is carried out. The functional role of the major components required for the cultivation of cyanobacteria is described. The problems associated with isolation, purification, and cultivation of soil cyanobacteria, as well as the relevant solutions, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acreman, J., Algae and cyanobacteria: isolation, culture and long-term maintenance, J. Ind. Microbiol., 1994, vol. 13, no. 3, pp. 193–194.

    Article  Google Scholar 

  • Allen, M.M., Simple conditions for the growth of unicellular blue-green algae on plates, J. Phycol., 1968, vol. 4, no. 1, pp. 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Allen, M.M. and Stanier, R.Y., Selective isolation of bluegreen algae from water and soil, J. Gen. Microbiol., 1968, vol. 51, no. 2, pp. 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Anderyuk, E.I., Kopteva, Zh.P., and Zanina, V.V., Tsianobakterii (Cyanobacteria), Kiev: Nauk. dumka, 1990.

    Google Scholar 

  • Barile M. and McGarruty G.J., Isolation of Mycoplasmas from cell cultures by agar and broth techniques in Methods in Mycoplasmology Tully, J.G. and Razin, S., Eds., New York: Academic Press, 1983, vol. 2. pp. 159–165.

    Chapter  Google Scholar 

  • Belitsina, G.D., Vasil’evskaya, V.D., Grishina, L.A., Evdokimova, T.I., Zborishchuk, N.G., Ivanov, V.V., Levin, F.I., Nikolaeva, S.A., Rozanov, B.G., Samoilova, E.M., and Tikhomirov, F.A., Soil and Soil Formation, in Pochvovedenie (Soil Science), Kovda, V.A. and Rozanov, B.G., Eds., Moscow: Vyssh. Shkola, 1988.

    Google Scholar 

  • Bolch, C.J.S. and Blackburn, S.I., Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz, J. Appl. Phycol., 1996, vol. 8, no. 1, pp. 5–13.

    Article  Google Scholar 

  • Choi, G.-G. Bae, M.-S., Ahn, C.-Y., and Oh, H.-M., Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria, Biotechnol. Lett., 2008, vol. 30, no. 1, pp. 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Domracheva, L.I., “Tsvetenie” pochvy i zakonomernostu ego razvitiya (Soil Blooms and Patterns of Their Development), Syktyvkar: Komi Nauch. Tsentr UrO RAD, 2005.

    Google Scholar 

  • Dubinin, A.V., Gerasimenko, L.M., Venetskaya, S.L., and Gusev, M.V., Absence of stable growth of cyanobacteria Microcoleus chthonoplastes in pure cultures, Mikrobiologiya, 1992, vol. 61, no. 1, pp. 51–62.

    Google Scholar 

  • Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D.A., and Papini, A., Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification, Biodivers. Conserv., 2015, vol. 24, no. 4, pp. 739–757.

    Article  Google Scholar 

  • Elango, V., Yuvakkumar, R., Jegan, S., Kannan, N., and Rajendran, V., A simple strategy to purify cyanobacterial cultures, J. Adv. Biotechnol., 2008, vol. 7, no. 4, pp. 23–24.

    Google Scholar 

  • Ferris, M.J. and Hirsch, C.F., Method for isolation and purification of Cyanobacteria, Appl. Environ. Microbiol., 1991, vol. 57, no. 5, pp. 1448–1452.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flechtner, V.R., Boyer, S.L., Johansen, J.R., and DeNoble, M.L., Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils, Nova Hedwigia, 2002, vol. 74, pp. 1–24.

    Article  Google Scholar 

  • Gromov, B.V. and Titova, N.N., Algal culture collection of the Laboratory of Microbiology, Biological Institute, Leningrad University, in Kul’tivirovanie kollektsionnykh shtammov vodoroslei (Cultivation of Algal Collection Strains), Leningrad, 1983, pp. 3–57.

    Google Scholar 

  • Gugger, M. and Hoffmann, L., Polyphyly of true branching cyanobacteria (Stigonematales), Int. J. Syst. Evol. Microbiol., 2004, vol. 54. pt. 2, pp. 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Guillard, R.R.L., Purification methods for microalgae, in Algal Culturing Techniques, Andersen, R.A., Ed., Burlington: Elsevier Academic, 2005, pp. 117–132.

    Google Scholar 

  • Guiry, M.D., How many species of algae are there?, J. Phycol., 2012, vol. 48, no. 5, pp. 1057–1063.

    Article  PubMed  Google Scholar 

  • Hagemann, M., Environmental stress, signalling and basic acclimation reactions, in Cyanobacteria and Nitrogen Fixation inExtreme Environments, Solheim, R., Ventura, R., and Wilmotte, A., Eds., Longyearbyen: Europ. Sci. Foundation CYANOFIX, 2002, p. 24. (Abstract.)

    Google Scholar 

  • Han, P.-P., Jia, S.-R., Sun, Y., Tan, Z.L., Zhong, C., Dai, Y.J., Tan, N., and Shen, S.G., Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme, World J. Microbiol. Biotechnol., 2014, vol. 30, no. 9, pp. 2407–2418.

    Article  CAS  PubMed  Google Scholar 

  • Harding, K., Day, J.G., Lorenz, M., Timmermann, H., Friedl, T., Bremner, D.H., and Benson, E.E., Introducing the concept and application of vitrification for the cryoconservation of algae—a mini-review, Nova Hedwigia, 2004, vol. 79, nos. 1–2, pp. 207–226.

    Article  Google Scholar 

  • Hong, J.W., Choi, H.-G., Kang, S.-H., and Yoon, H.-S., Axenic purification and cultivation of an arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for substainable production of algae-based biofuel, Algae, 2010, vol. 25, no. 2, pp. 99–104.

    Article  Google Scholar 

  • Hughes, E.O., Gorham, P.R., and Zehnder, A., Toxicity of a unialgal culture of Microcystis aeruginosa, Can. J. Microbiol., 1958, vol. 4, no. 3, pp. 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Karavanova, E.I. and Belyanina, L.A., Composition of soil solutions of the major soil types of the Central Forest Natural Biospheric Preserve, Vestn. MGU, ser. 17, Soil Sci., 2007, no. 2, pp. 23–29.

    Google Scholar 

  • Khaziev, F.Kh. and Kabirov, R.R., Kolichestvennye metody pochvenno-al’gologicheskikh issledovanii (Quantitative Methods in Research on Soil Algology), Ufa: BFAN SSSR, 1986.

    Google Scholar 

  • Kim, J.-S., Park, Y.-H., Yoon, B.-D., and Oh, H.-M., Establishment of axenic cultures of Anabaena flos-aquae and Aphanothece nidulans (Cyanobacteria) by lysozyme treatment, J. Phycol., 1999, vol. 35, pp. 865–869.

    Article  Google Scholar 

  • Komárek, J., Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches, Algae, 2006, vol. 21, no. 4, pp. 349–375.

    Article  Google Scholar 

  • Komárek, J., Cyanoprokaryota. 3. Heterocyteous genera, in Süswasserflora von Mitteleuropa, Büdel, B., Gärtner, G., Krienitz, L., and Schager, M., Eds., Heidelberg: Springer Spektrum, 2013.

    Google Scholar 

  • Komárek, J. and Anagnostidis, K., Cyanoprokaryota. 1.Teil: Chroococcales, in Süswasserflora von Mitteleuropa, Ettl, H., Gärtner, G., Heynig, H., and Mollenhauer, D., Eds., Jena: Gustav Fischer, 1998, vol. 19/1.

    Google Scholar 

  • Komárek, J. and Anagnostidis, K., Cyanoprokaryota. 2. Teil: Oscillatoriales, in Süsswasserflora von Mitteleuropa, Büdel, B., Krienitz, L., Gärtner, G., and Schager, M., Eds., Jena: Elsevier, 2005, vol. 19/2, pp. 1–759.

    Google Scholar 

  • Komárek, J., Kastovsky, J., Mares, J., and Johansen, J.R., Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach, Preslia, 2014, vol. 86, no. 4, pp. 295–335.

    Google Scholar 

  • Kostikov, I.Yu., Romanenko, P.O., Demchenko, E.M., Darienko, T.M., Mikhailyuk, T.I., Ribchinskii, O.V., and Solonenko, A.M., Vororosti gruntiv Ukraini (istoriya ta metody doslidzhennya, sistema, konspekt flori (Alga of Ukrainean Soils: History and Methods of Investigation, System, and Outline of the Flora) Kiev: Fitosotsiotsentr, 2001.

    Google Scholar 

  • Kotai, J., Instructions for Preparation of Modified Nutrient Solution Z8 for Algae, Blindern: Norwegian Inst. Water Res., 1972. Publication B-11/69.

    Google Scholar 

  • Lee, Y.-K. and Shen, H., Basic culturing techniques, in Handbook of Microalgal Culture, Richmond, A., Ed., Oxford: Blackwell Sci., 2004, pp. 40–56.

    Google Scholar 

  • Lundin, D.J. and Lincoln, C.K., Mycoplasmal contamination of cell cultures within the clinical diagnostic laboratory, Amer. Clin. Lab., 1994, no. 4, р. 6.

    Google Scholar 

  • Manucharova, N.A., Molekulyarno-biologicheskie aspekty issledovanii v eklogii i mikrobiologii (Molecular Biological Aspects of Ecological and Microbiological Research), Moscow: Mos. Gos. Univ., 2009.

    Google Scholar 

  • Overmann, J., Principles of enrichment, isolation, cultivation and preservation of prokaryotes, in The Prokaryotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer, 2006, pp. 80–136.

    Chapter  Google Scholar 

  • Pankratova, E.M., Trefilova, L.V., Zyablykh, R.Yu., and Ustyuzhanin, I.A., Cyanobacterium Nostoc paludosum Kütz as a basis for creation of agriculturally useful microbial associations by the example of bacteria of the genus Rhizobium, Microbiology (Moscow), 2008, vol. 77, no. 2, pp. 228–234.

    Article  CAS  Google Scholar 

  • Ponomareva, V.V. and Sotnikova, N.P., Patterns of element migration and accumulation in podzolic soils, in Biogeokhimicheskie protsessy v podzolistykh pochvakh (Biogeochemical Processes in Podzolic Soils), Leningrad: Nauka, 1972.

    Google Scholar 

  • Rastoll, M.J., Ouahid, Y., Martín-Gordillo, F., Ramos, V., Vasconcelos, V., and del Campo, F.F., The development of a cryopreservation method suitable for a large cyanobacteria collection, J. Appl. Phycol., 2013, vol. 25, no. 5, pp. 1483–1493.

    Article  CAS  Google Scholar 

  • Rippka, R., Isolation and purification of cyanobacteria, Methods Enzymol., 1988, vol. 167, pp. 3–28.

    Article  CAS  PubMed  Google Scholar 

  • Rippka, R., Deruelles, T., Waterbury, T.B., Herdman, M., and Stanier, R.Y., Genetic assignment, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1–61.

    Google Scholar 

  • Rippka, R., Waterbury, J.B., and Stainer, R.Y., Isolation and purification of cyanobacteria: some general principles, in The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Starr, M.P., Stolp, H., Truper, H.G., Balows, A., and Schege, H.G., Eds., Berlin: Springer, 1981, pp. 212–222.

    Chapter  Google Scholar 

  • Sant’Anna, C.L., Azevedo, M.T.P., Agujaro, L.F., Carvalho, M.C., Carvalho, L.R., and Souza, R.C.R., Manual ilustrado para identificaão e contagem de cianobactérias planctônicas de águas continentais brasileiras, 1st ed., Rio de Janeiro: Editora Interciência, 2006.

    Google Scholar 

  • Sarchizian, I. and Ardelean, I.I., Improved lysozyme method to obtain cyanobacteria in axenic cultures, Rom. J. Biol.–Plant Biol., 2010, vol. 55, no. 2, pp. 143–150.

    Google Scholar 

  • Scandinavian Culture Collection of Algae and Protozoa, 2015. URL: http://www.sccap.dk/media/freshwater/7.asp (accessed: 04.12.2015).

  • Schirrmeister, B.E., Antonelli, A., and Bagheri, H.C., The origin of multicellularity in cyanobacteria, BMC Evol. Biol., 2011, vol. 11, p. 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schopf, J.W., Cyanobacteria: pioneers of the early Earth, Nova Hedwigia, 1996, vol. 112, pp. 13–32.

    Google Scholar 

  • Seckbach, J., Algae and cyanobacteria in extreme environments, in Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Ed., New York: Springer Science, Business Media, 2007, vol. 11, pp. 1–811.

    Google Scholar 

  • Sena, L., Rojas, D., Montiel, E., Gonzalez, H., Moret, J., and Naranjo, L., A strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria, World J. Microbiol. Biotechnol., 2011, vol. 27, pp. 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  • Shalygin, S.S., Morphology, ecology, and occurrence of the genus Gloeocapsa Kütz. in the Lapland Biosphere Reserve (Murmansk oblast, Russia), in Aktual’nye problemy sovremennoi al’gologii (Focal Problems in Modern Algology), Proc. 4 Int. Conf., Kiev, 2012, pp. 329–330.

    Google Scholar 

  • Shih, P. M., Wu, D., Latifi, A., Axen, S.D., Fewer, D.P., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N., Rippka, R., Herdman, M., Sivonen, K., Coursin, T., Laurent, T., Goodwin, L., et al., Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 3, pp. 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi, H., Association of heterotrophic bacteria with aggregated Arthrospira platensis exopolysaccharides: implications in the induction of axenic cultures, Biosci. Biotechnol. Biochem., 2015, vol. 79, no. 2, pp. 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Shtina, E.A., Algal composition in Russian soils, Tezisy dokladov II s’ezda Obshchestva pochvovedov (Proceedings of the 2nd Congress of the Soil Scientists Society), 1996, vol. 1, pp. 303–304.

    Google Scholar 

  • Shtina, E.A., Zenova, G.M., and Manucharova, N.A., Algological soil monitoring, Euras. Soil. Sci., 1998, no. 12, pp. 1319–1330.

    Google Scholar 

  • Skulberg, O.M., Culture Collection of Algae at Norwegian Institute for Water Research. Blindern: Norwegian Institute for Water Research, 1983.

    Google Scholar 

  • Thompson, A.W., Foster, R.A., Krupke, A., Carter, B.J., Musat, N., Vaulot, D., Kuypers, M.M.M., and Zehr, J.P., Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga, Science, 2012, vol. 337, no. 6101, pp. 1546–1550.

    Article  CAS  PubMed  Google Scholar 

  • Trevors, J.T., One gram of soil: a microbial biochemical gene library, Antonie van Leeuwenhoek, 2010, vol. 97, no. 2, pp. 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Trofimov, S.Ya. and Karavanova, E.I., Zidkaya faza pochv (Liquid Phase of Soils), Moscow: Mos. Gos. Univ., 2009.

    Google Scholar 

  • Vázquez-Martínez, G., Rodriguez, M.H., Hernández-Hernández, F., and Ibarra, J.E., Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis, J. Microbiol. Methods, 2004, vol. 57, no. 1, pp. 115–121.

    Article  PubMed  Google Scholar 

  • Volkova, V.V., Soil solutions of regular chernozems in Khomutovskaya Step, Azov area, in Pochvenno-biogeotsenologicheskie issledovaniya v Priazov’e (Soil Biogeocelnolgical Research in the Azov Area), Moscow: Nauka, 1975, pp. 72–101.

    Google Scholar 

  • Voroney, R.P. and Heck, R.J. The soil habitat, in Soil Microbiology, Ecology, and Biochemistry, 4th ed., Paul, E.A., Ed., 2015, pp. 15–40.

    Google Scholar 

  • Watanabe, M.M., Nakagawa, M., Katagiri, M., Aizawa, K.-I., Hiroki, M., and Nozaki, H., Purification of freshwater picoplanktonic cyanobacteria by pour-plating in “ultra-low-gelling-temperature agarose,” Phycol. Res., 1998, vol. 46 (Suppl.), pp. 71–75.

    Article  Google Scholar 

  • Waterbury, J.B., The Cyanobacteria—isolation, purification and identification, Prokaryotes, 2006, vol. 4, pp. 1053–1073.

    Article  Google Scholar 

  • Zhubanova, A.A., Ernazarova, A.K., Kaiyrmanova, G.K., Zayadan, B.K., Savitskaya, I.S., Abdieva, G.Zh., Kistaubaeva, A.S., and Akimbekov, N.Sh., Construction of Cyanobacterial—bacterial consortium on the basis of axenic cyanobacterial cultures and heterotrophic bacteria cultures for bioremediation of oil-contaminated soils and water ponds, Russ. J. Plant Physiol., 2013, vol. 60, no. 4, pp. 588–595.

    Article  Google Scholar 

  • Zvyagintsev, D.G., Bab’eva, I.P., and Zenova, G.M., Biologiya pochv (Soil Biology), Moscow: Mos. Gos. Univ., 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Temraleeva.

Additional information

Original Russian Text © A.D. Temraleeva, S.A. Dronova, S.V. Moskalenko, S.V. Didovich, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 4, pp. 369–380.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temraleeva, A.D., Dronova, S.A., Moskalenko, S.V. et al. Modern methods for isolation, purification, and cultivation of soil cyanobacteria. Microbiology 85, 389–399 (2016). https://doi.org/10.1134/S0026261716040159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716040159

Keywords

Navigation